首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
化学   26篇
晶体学   1篇
力学   1篇
数学   1篇
物理学   7篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Thee + e ?K + K ? cross section has been measured from about 750 events in the energy interval \(1350 \leqq \sqrt s \leqq 2400 MeV\) with the DM2 detector at DCI. TheK ± form factor |F F ±| cannot be explained by the ρ, ω, ? and ρ′(1600). An additional resonant amplitude at 1650 MeV has to be added as suggested by a previous experiment.  相似文献   
2.
3.
One major challenge in nucleic acids analysis by hybridization probes is a compromise between the probe's tight binding and sequence‐selective recognition of nucleic acid targets folded into stable secondary structures. We have been developing a four‐way junction (4WJ)‐based sensor that consists of a universal stem‐loop (USL) probe immobilized on an electrode surface and two adaptor strands (M and F). The sensor was shown to be highly selective towards single base mismatches at room temperature, able to detect multiple targets using the same USL probe, and have improved ability to detect folded nucleic acids. However, some nucleic acid targets, including natural RNA, are folded into very stable secondary and tertiary structures, which may represent a challenge even for the 4WJ sensors. This work describes a new sensor, named MVF since it uses three probe stands M, V and F, which further improves the performance of 4WJ sensors with folded targets. The MVF sensor interrogating a 16S rRNA NASBA amplicon with calculated folding energy of ?32.82 kcal/mol has demonstrated 2.5‐fold improvement in a signal‐to‐background ratio in comparison with a 4WJ sensor lacking strand V. The proposed design can be used as a general strategy in the analysis of folded nucleic acids including natural RNA.  相似文献   
4.
The radiative decayJ/ψ → γ π+ π? has been studied using the 8.6 millionJ/ψ produced in the DM2 experiment at the DCIe +e? storage rings at Orsay. The π+ π? mass spectrum shows a cleanf 2 (1270) signal, and the possible presence of two other states at thef 2 (1720) andf 4 (2030) masses. For thef 2 (1270), the branching ratio BR(J/ψ →γf)xBR(f→π+ π?) is measured to be (7.50±0.30±1.12)×10?4, and the spin analysis prefers theJ=2 assignment, with helicity parametersx=0.83±0.06 andy=0.01±0.06. The existence of higher mass states is discussed.  相似文献   
5.
6.
The steady propagation of a thin smouldering front in a half-spacehas been considered. A suitable coordinate transformation hasallowed the region near the leading edge of the front to beexamined for both a maintained planar surface and with surfacecollapse due to material shrinkage. The change in the oxidizerconcentration for a small increment in the propagation speedfor large time and surface collapse has been determined. Theinfluence of two types of nonlinear diffusion on the shape ofthe smouldering front has been found; other cases can be dealtwith in a similar manner.  相似文献   
7.
A complete set (YES, NOT, AND, and ANDNOT) of molecular scale logic gates based on ligase deoxyribozymes was constructed. The activity of these gates was visualized through the formation of cascades with downstream phosphodieseterase YES gates, which performed fluorogenic cleavage.  相似文献   
8.
Despite decades of effort, gene therapy (GT) has failed to deliver clinically significant anticancer treatment, owing in part to low selectivity, low efficiency, and poor accessibility of folded RNA targets. Herein, we propose to solve these common problems of GT agents by using a DNA nanotechnology approach. We designed a deoxyribozyme‐based DNA machine that can i) recognize the sequence of a cancer biomarker with high selectivity, ii) tightly bind a structured fragment of a housekeeping gene mRNA, and iii) cleave it with efficiency greater than that of a traditional DZ‐based cleaving agent. An important advantage of the DNA nanomachine over other gene therapy approaches (antisense, siRNA, and CRISPR/cas) is its ability to cleave a housekeeping gene mRNA after being activated by a cancer marker RNA, which can potentially increase the efficiency of anticancer gene therapy. The DNA machine could become a prototype platform for a new type of anticancer GT agent.  相似文献   
9.
10.
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule‐modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA‐based logic gates. The enzyme‐based Fredkin gate with three input and three output signals was connected to the DNA‐based Feynman gate with two input and two output signals—both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input‐controlled signal‐routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号