首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   11篇
  国内免费   1篇
化学   307篇
晶体学   7篇
力学   11篇
数学   57篇
物理学   51篇
  2023年   5篇
  2021年   26篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   17篇
  2015年   14篇
  2014年   7篇
  2013年   24篇
  2012年   20篇
  2011年   28篇
  2010年   11篇
  2009年   10篇
  2008年   18篇
  2007年   18篇
  2006年   17篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1998年   6篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1984年   4篇
  1983年   7篇
  1982年   2篇
  1981年   4篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   9篇
  1974年   5篇
  1973年   3篇
  1968年   2篇
  1961年   2篇
  1958年   2篇
  1957年   2篇
  1954年   4篇
  1923年   2篇
排序方式: 共有433条查询结果,搜索用时 180 毫秒
1.
The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.  相似文献   
2.
3.
4.
5.
6.
Abstract— Photosensitized pyrimidine dimer splitting characterizes the enzymatic process of DNA repair by the DNA photolyases. Possible pathways for the enzymatic reaction include photoinduced electron transfer to or from the dimer. To study the mechanistic photochemistry of splitting by a sensitizer representative of excited state electron donors, a compound in which an indole is covalently linked to a pyrimidine dimer has been synthesized. This compound allowed the quantitative measurement of the quantum efficiency of dimer splitting to be made without uncertainties resulting from lack of extensive preassociation of the unlinked dimer and sensitizer free in solution. Irradiation of the compound with light at wavelengths absorbed only by the indolyl group (approximately 280 nm) resulted in splitting of the attached dimer. The quantum yield of splitting of the linked system dissolved in N20-saturated aqueous solution was found to be 0.04 ± 0.01. The fluorescence typical of indoles was almost totally quenched by the attached dimer. A splitting mechanism in which an electron is efficiently transferred intramolecularly from photoexcited indole to ground state dimer has been formulated. The surprisingly low quantum yield of splitting has been attributed to inefficient splitting of the resulting dimer radical anion. Insights gained from this study have important mechanistic implications for the analogous reaction effected by the DNA photolyases.  相似文献   
7.
8.
C28H36O10. KSCN is monoclinic, space groupP21 withZ=2,a=10.390(3),b=8.959(7),c=16.377(7) Å, =92.49(5)°. FinalR=0.053 for 1437 reflections measured at room temperature. The K ion lies on the least-squares plane formed by the six oxygen atoms in the macrocyclic ring. The SCN ion was found on the same face of the macrocycle as the chiral glucopyranoside moiety.Methyl-4,6-O-benzylidene-2,3-O-(1,2-bis(ethoxyethoxy)benzenediyl)--d-glucopyranoside.  相似文献   
9.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor Nα-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1′-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.  相似文献   
10.
Pyrene substituents covalently bounded to polyelectrolytes show not only excited-state interactions but also unique ground-state interactions in aqueous solution. The pyrene moieties in pyrenesubstituted ionic molecules also show these interactions when aqueous solutions of these molecules are treated with polyelectrolytes or surfactants well below their critical micelle concentrations. These hydrophobic interactions are revealed by changes in absorption, fluorescence, and excitation spectra. The well-resolved vibrational bands in the absorption and excitation spectra of pyrene become somewhat diffuse, whereas monomer fluorescence is reduced and replaced by excimer fluorescence. The rationale for these results is that the pyrene moieties in these ionic solutions seek out hydrophobic locations on the polyelectrolytes or surfactants, where pyrene aggregation is responsible for these interactions and the corresponding changes in spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号