首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   14篇
数学   1篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.  相似文献   
2.
Mehta SK  Khushboo  Umar A 《Talanta》2011,85(5):2411-2416
Monodispersed PEG-coated ZnS (P-ZnS) nanoparticles (NPs) were synthesized by facile microwave process and utilized as efficient electron mediators for the fabrication of highly sensitive hydrazine chemical sensor. The detailed morphological and structural properties revealed the monodispersity and good crystallinity for synthesized P-ZnS NPs. A high-sensitivity of ∼89.3 μA cm−2 μM and low limit of detection of 1.07 μM, based on S/N ratio, were obtained for the fabrication of hydrazine chemical sensor based on P-ZnS NPs. To the best of our knowledge, this is the first report which demonstrates the utilization of P-ZnS NPs for the fabrication of efficient hydrazine chemical sensor. By this work, it could be concluded that simply synthesized ZnS NPs can be used as efficient electron mediators for the fabrication of effective hydrazine chemical sensors.  相似文献   
3.
4.
Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies. Molecular identification showed the presence of the genera Bacillus, Pantoea, Marinobacterium, Acinetobacter, Enterobacter, Pseudomonas, Rhizobium, and Sinorhizobium (LC027447-53; LC027455; LC027457, LC027459, and LC128410). The phylogenetic studies along with carbon source utilization profiles using the Biolog® indicated the presence of novel species and the in planta studies revealed promising results under salinity stress. Whereas the nodule endophytes had minute plant growth-promoting (PGP) activity, the cell free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum L). The maximum vigor index was monitored in isolate Y7 (Enterobacter sp strain NIASMVII). Indole acetic acid (IAA) production by the isolates ranged between 0.22 and 25.58 μg mL?1. This signifies the need of exploration of their individual metabolites for developing next-generation bio-inoculants through co-inoculation with other compatible microbes. This study has potential in utilization of the weed-associated microbiome in terms of alleviation of salinity stress in crop plants.  相似文献   
5.
Effect of magnetic nanoparticles (nickel ferrite) doping on the dielectric and electro-optical properties of a ferroelectric liquid crystal mixture has been studied. In a doped ferroelectric liquid crystal mixture, dispersion of a small amount (0.25 wt.%) of nickel ferrite nanoparticles decreases the polarization and improves the response time compared to an undoped mixture. The significant changes in the polarization and response time are explained on the basis of dipole–dipole interaction and anchoring phenomena. Dielectric permittivity also increases with increasing the temperature of the SmC* phase and shows a reduction in dielectric loss in a doped sample. A Goldstone mode is clearly observed at ~200 and ~500 Hz in an undoped and a doped sample, respectively.  相似文献   
6.
Molecular Diversity - The rate of mutability of pathogenic H1N1 influenza virus is a threat. The emergence of drug resistance to the current competitive inhibitors of neuraminidase, such as...  相似文献   
7.
In this paper, a pair of symmetric dual second-order fractional programming problems is formulated and appropriate duality theorems are established. These results are then used to discuss the minimax mixed integer symmetric dual fractional programs.  相似文献   
8.
In the present study, magnetic nanoparticles (NP, nickel ferrite) in different concentrations into ferroelectric liquid crystal (FLC) mixture have been prepared and studied. The effect of nickel ferrite concentration on the electro-optic, dielectric and optical properties of FLC mixture has been studied and discussed. An improvement in spontaneous polarization, response time in nickel ferrite-FLC-doped samples compared to FLC is observed and explained on the basis of dipole moment and anchoring phenomena. The Goldstone mode (GM) is detected in all samples and follows a Debye-type relaxation behaviour. A twofold increase in relaxation frequency for the doped sample rather than the pure sample has been observed. The band gap was found more or less independent of doping concentration. The activation energy (Ea) also decreases on increasing the doping amount.  相似文献   
9.
Highly conducting polypyrrole (PPY) films, doped with various anions [pTS?, ClO4?, and NO3? and mixed electrolyte system (pTS? + ClO4?)], have been electrochemically synthesized in aqueous solution at ~275 K in an inert atmosphere. PPY exhibits metallic order dc conductivity at room temperature and shows variation of conductivity with respect to time of polymerization. Effect of dopant anion on growth mechanism of PPY is evident from its surface morphology. X‐ray photoelectron spectroscopy (XPS), used to examine the surface composition and doping level of various PPY films, confirms the anionic doping into the polymer backbone. Both XPS and ultraviolet–visible spectroscopy give evidence of formation of polarons and bipolarons. The temperature (4.2–320 K)‐dependent dc conductivity data of these PPY films have been explained by Mott's 3D variable‐range hopping conduction model. Mott's parameters have been estimated, and structural disorder with doping is correlated for all the samples. Mott's criterion for distant hopping sites prevails in case of moderately doped samples (PPY3, PPY4, and PPY5), whereas the hopping to nearest neighbor sites is found more suitable in case of highly doped samples (PPY1 and PPY2). The origin of these changes is due to the modification in the molecular structure of PPY, which is governed by different growth mechanisms for organic (pTS?) and inorganic (ClO4? and NO3?) counter anions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
10.
Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm . In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 μm . Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Å resolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号