首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   37篇
  国内免费   5篇
化学   850篇
晶体学   11篇
力学   16篇
数学   70篇
物理学   306篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   14篇
  2018年   7篇
  2017年   5篇
  2016年   27篇
  2015年   22篇
  2014年   32篇
  2013年   54篇
  2012年   70篇
  2011年   94篇
  2010年   51篇
  2009年   50篇
  2008年   94篇
  2007年   86篇
  2006年   64篇
  2005年   62篇
  2004年   62篇
  2003年   67篇
  2002年   67篇
  2001年   24篇
  2000年   31篇
  1999年   13篇
  1998年   13篇
  1997年   14篇
  1996年   17篇
  1995年   10篇
  1994年   13篇
  1993年   25篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1987年   5篇
  1986年   14篇
  1985年   13篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1977年   8篇
  1976年   11篇
  1975年   11篇
  1974年   3篇
  1973年   8篇
排序方式: 共有1253条查询结果,搜索用时 109 毫秒
1.
2.
The electrode reaction of decamethylferrocene (DMFc) dissolved in a thin layer of a room-temperature molten salt (RTMS), 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C8mimC1C1N) or 1-octyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide (C8mimC2C2N), on a self-assembled monolayer-modified gold electrode is coupled with the ion transfer across the interface between the RTMS and the outer aqueous solution (W) to give a voltammogram whose shape resembles a voltammogram of a simple one-electron transfer process. The electroneutrality of the RTMS layer during the oxidation of DMFc to decamethylferricenium ion is maintained by the concomitant dissolution of C8mim+ ion from the RTMS phase to the W phase, and the reduction of decamethylferricenium ion to DMFc is accompanied by the transfer of either C1C1N- or C2C2N- from RTMS to W. The midpoint potential of the voltammogram varies with the concentration of the salt in the aqueous phase, C8mimCl or LiCnCnN (n = 1 or 2), in a Nernstian manner, showing that the phase-boundary potential between the RTMS and the W is controlled by the partition of these ions. Although the phase-boundary potential across the RTMS / W interface is Nernstian with respect to the ions common to both phases at the equilibrium, the polarization at the RTMS / W interface under current flow distorts the shape of the voltammograms, resulting in a wider peak separation in the voltammogram.  相似文献   
3.
4.
A novel process comprising the UV‐induced photografting of styrene into poly(tetrafluoroethylene) (PTFE) films and subsequent sulfonation has been developed for preparing proton‐conducting membranes. Although under UV irradiation the initial radicals were mainly generated on the surface of the PTFE films by the action of photosensitizers such as xanthone and benzoyl peroxide, the graft chains were readily propagated into the PTFE films. The sulfonation of the grafted films was performed in a chlorosulfonic acid solution. Fourier transform infrared and scanning electron microscopy were used to characterize the grafted and sulfonated membranes. With a view to use in fuel cells, the proton conductivity, water uptake, and mechanical properties of the prepared membranes were measured. Even through the degree of grafting was lower than 10%, the proton conductivity in the thickness direction of the newly prepared membranes could reach a value similar to that of a Nafion membrane. In comparison with γ‐ray radiation grafting, UV‐induced photografting is very simple and safe and is less damaging to the membranes because significant degradation of the PTFE main chains can be avoided. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2624–2637, 2007  相似文献   
5.
6.
We study the hyperon-nucleus potential with distorted-wave impulse wave approximation (DWIA) using the Green's function method. In order to include the nucleon and hyperon potential effects in Fermi averaging, we introduce the local optimal momentum approximation of target nucleons. We can describe the quasi-free Λ , Σ and Ξ production spectra in a better way than in the standard Fermi-averaged t -matrix treatments.  相似文献   
7.
The effect of spin relaxation on tunnel magnetoresistance (TMR) in a ferromagnet/superconductor/ferromagnet (FM/SC/FM) double tunnel junction is theoretically studied. The spin accumulation in SC is determined by balancing of the spin-injection rate and the spin-relaxation rate. In the superconducting state, the spin-relaxation time τs becomes longer with decreasing temperature, resulting in a rapid increase of TMR. The TMR of FM/SC/FM junctions provides a useful probe to extract information about spin-relaxation in superconductors.  相似文献   
8.
9.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号