首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   8篇
力学   1篇
物理学   1篇
  2021年   2篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Journal of Thermal Analysis and Calorimetry - The role of method of synthesis on the size of flakes, dispersion stability and thermophysical properties of aqua based reduced graphene oxide (rGO)...  相似文献   
2.
3.
With the aim to develop more efficient, less toxic, target specific metal drugs and evaluate their anticancer properties in terms of oxidation state and co-ligand sphere, a sequence of Ru(II), Ru(III) complexes bearing 4-hydroxy-pyridine-2,6-dicarboxylic acid and PPh(3)/AsPh(3) were synthesized and structurally characterized. Biological studies such as DNA binding, antioxidant assays and cytotoxic activity were carried out and their anticancer activities were evaluated. Interactions of the complexes with calf thymus DNA revealed that the triphenylphosphine complexes could bind more strongly than the triphenylarsine complexes. The free radical scavenging ability, assessed by a series of in vitro antioxidant assays involving DPPH radical, hydroxyl radical, nitric oxide radical, superoxide anion radical, hydrogen peroxide and metal chelating assay, showed that the Ru(III) complexes possess excellent radical scavenging properties compared to those of Ru(II). Cytotoxicity studies using three cancer lines viz HeLa, HepG2, HEp-2 and a normal cell line NIH 3T3 showed that Ru(II) complexes exhibited substantial cytotoxic specificity towards cancer cells. Furthermore, the Ru(II) complexes were found to be superior to Ru(III) complexes in inhibiting the growth of cancer cells.  相似文献   
4.
Six novel Ln(III) Schiff base complexes were synthesized using rare earth metals with threonine and 5‐bromosalicylaldehyde, namely Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III) Schiff bases. These complexes were characterized using elemental analysis, molar conductivity, Fourier transform infrared and UV–visible spectroscopies, and thermogravimetry–differential thermal analysis. The general formula of the complexes is [Ln(L)(NO3)2(H2O)].NO3 (L = Schiff base ligand). The spectroscopic data reveal that the Schiff base ligand behaves as a tridentate ligand with ONO donor atoms sequencing towards the central metal ion. An investigation of fluorescence properties of the Sm(III), Er(III) and Tb(III) complexes shows that the Ln(III) ions can be sensitized efficiently by the ligand to some extent. Antimicrobial activity testing indicates that all six complexes exhibit antibacterial and antifungal ability against microbes with broad antimicrobial spectra. In addition, the antioxidant properties of the complexes were also screened. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
A series of novel quinoline-proline hybrids ( 11a-g ) and quinoline-proline-1,2,3-triazole hybrids ( 12-14 ) were synthesized by click chemistry based on molecular hybridization concept and were characterized by NMR, mass spectrometry, and elemental analysis. All the titled target compounds were tested for antitubercular activity by MABA and LORA methods by in vitro. Interestingly, two compounds (2R,4S)-1-((2-cyclopropyl-4-(4-fluorophenyl)-quinolin-3-yl)-methyl)-4-(4-nitrobenzamido)-N-phenylpyrrolidine-2-carboxamide ( 11b ) and (2R,4S)-1-((2-cyclopropyl-4-(4-fluorophenyl)-quinolin-3-yl)-methyl)-4-(4-fluorobenzamido)-N-phenylpyrrolidine-2-carboxamide ( 11c ) exhibited significant activity against the tested Mycobacterium tuberculosis H37Rv strain. Further, the cytotoxicity ( CC 50 ) profile of the titled compounds against the Vero cell was performed and discussed. A molecular docking study of the hit compounds ( 11b and 11c ) was also performed to find their putative binding interaction with the active site of the target proteins. Finally, in silico ADMET properties were also predicted for all the synthesized molecules to evaluate their drug-likeness behavior.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is...  相似文献   
7.
Stable lyophilisomes of fibrinogen at pH 7.5 have been prepared by the method of a rapid freezing–heating and annealing sequence. Reduction of the lyophilisomes of the nickel–fibrinogen complex coated on solid substrates and subsequent heating showed formation of nickel hydroxide and finally nickel oxide. Ultraviolet–visible spectroscopy has been used to monitor the thin films of pure fibrinogen microcapsules, as well as the subsequent nucleation and growth of nanoparticles within the supramolecular structure. Transmission electron microscopy showed initially a thread-like structure which disappeared on continued heating, resulting in nanoparticles ranging from 10 to 50 nm. Particle-size distribution of product was analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED), and Brunauer–Emmett–Teller (BET) N2 adsorption. The results suggest that the NiO particles have a body-centered cubic structure and are well dispersed. The particle-size distribution ranges from 10 to 50 nm with an average particle size about 28 nm, and the specific surface area is 34 m2/g. Magnetic study carried out on the prepared nanoparticles showed a ferromagnetic behavior.  相似文献   
8.
Protein folding involves the aminoacid sequence to come forth and form an energy minimized structure. Recently molecular crowding leading to increase in viscosity is said to be one of the major concerns affecting protein folding. Many external fluorescent probes are used to detect such increases in viscosity. Since most of the protein sequences contain L-Phe and L-Trp, in this study we have used these aminoacids as probes to detect changes in viscosity. This study will help to advance the knowledge on molecular crowding effects in protein folding.  相似文献   
9.
Birnessite type layered MnO6 oxides with increased crystallinity were synthesized from six carbohydrates and three dihydric phenols viz., dextrose, starch, fructose, galactose, maltose, lactose, catechol, resorcinol, quinol and KMnO4 through the formation of a sol–gel. All of the MnO6 oxides were characterized by powder XRD. The strong signal at 2θ ~ 12° corresponding to 7.4 Å refers to the Mn–Mn distance between the adjacent layers. The interlayer volume is dispersed with K+ ions and H2O molecules. The presence of interlayer K+ ions is indicated by a signal at 25°, corresponding to a distance of 3.5 Å. IR spectra of the oxides show signature bands at ca. 500 cm?1 due to the stretching modes occurring for MnO6 entity. A broad band observed at ca. 3300 cm?1 is due to interlayer water molecules. Thermal analysis indicated three stage decomposition with the formation of MnO2 at ca. 600 °C through the intermediate formation of Mn(OH) n . The MnO6 exhibited a remarkable CO2 scrubbing ability, which has also been investigated.  相似文献   
10.
Accumulation of silica in marine organisms such as diatoms and sponges has been widely reported. The proteins depositing silica in these organisms have been identified and its structure has also been described. The ultrastructure of silica has not been studied in detail, however. Herein we describe the structure of silica in the spicules of the sponge Suberites domuncula. Peroxide treatment was performed to remove the organic compounds, thereby enabling a better study of the silica. Methods used for the study included scanning and transmission electron microscopy. Electron diffraction enabled structural comparison with silica glass at the atomic level. Small-angle X-ray scattering (SAXS) of the spicules was also conducted and structure correlation between these methods attempted. At a lower magnification, spicule needles with a smooth outer surface were visible. Diffraction results suggested a network-like structure in the spicules. Silica particles of 3 nm diameter could be measured by SAXS.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号