首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学   13篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 189 毫秒
1.
Complexes of Fe(III), Co(II), Ni(II), and Cu(II) with 4-dicyclohexylaminomethyl antipyrine (DCHAMA, L) were prepared and characterized by elemental and chemical analyses, IR, electronic absorption, 1H NMR and EPR spectroscopies, thermal analysis, and magnetic susceptibility measurements. The stoichiometry of the complexes was found to be MLX2, MLX3, or MLX2(H2O)2 where X = Cl or NO3. The ligand exhibits a bidentate mode of coordination. Thermal analysis of the chloro complexes shows a three stage decomposition pattern for the Cu(II) complex and a two stage decomposition pattern for Fe(III) and Co(II) complexes to yield the respective metal oxides as the end product. Kinetic and thermodynamic parameters such as n, E a, H #, S #, and G # were calculated using Coats–Redfern and Madhusudhanan–Krishnan–Ninan integral methods. The coordination number of the metal atom is found to influence the thermal stability of the complexes. The antimicrobial screening shows that the four-coordinated complexes are more active than the five- and six-coordinated ones and DCHAMA.  相似文献   
2.
An efficient, solvent‐free and 18‐crown‐6 catalyzed method for the synthesis of N‐alkyl‐4‐(4‐(5‐(2‐(alkyl‐amino)thiazol‐4‐yl)pyridin‐3‐yl)phenyl)thiazol‐2‐amine, N‐alkyl‐4‐(5‐(2‐alkyamino)thiazol‐4‐yl)pyridine‐3‐yl)thiazol‐2‐amine, and 4,4′‐bis‐{2‐[amino]‐4‐thiazolyl}biphenyl bis‐heterocyclic derivatives via microwave accelerated cyclization is presented.  相似文献   
3.
This work reports on the first comprehensive characterization of octadecyl (C(18)) modified MCM-41 silica spheres, prepared via the pseudomorphic route, followed by grafting with mono- or trifunctional octadecyl (C(18)) alkyl chains and endcapping with hexamethyldisilazane. Small angle X-ray scattering (SAXS), nitrogen adsorption-desorption and scanning electron microscopy (SEM) measurements were performed to obtain information about the MCM-41 pore structure, surface properties and morphological features. The degree of grafting and cross-linking of the silanes were determined by (29)Si magic angle spinning NMR spectroscopy, while FTIR and (13)C NMR were employed to study the conformational behavior of the surface-immobilized alkyl chains. The SAXS pattern proved the existence of a hexagonal mesopore arrangement for both the ungrafted and the grafted MCM-41 silica spheres. In addition, there is evidence of some long-range distortion in the pore structure. SEM measurements revealed the same morphological features for the parent silica and the MCM-41 silica spheres before and after C(18) grafting. The achieved surface loading for the MCM-41 material is rather low. It was also shown that a substantial amount of the accessible surface silanol groups is endcapped by trimethylsilane which in turn results in a very low surface coverage due to the octadecyl chains. The nitrogen sorption studies provided values for the surface area, total pore volume and pore diameter which are very typical for mesoporous materials. The reduction in surface area and total pore volume upon surface grafting is related to the binding of trimethylsilane in the interior of the pores, while due to the spatial restrictions octadecyl chains are primarily attached near the pore entrance. The experimental FTIR and (13)C NMR data point to a very low conformational order of the C(18) chains which is in accordance with the observed low surface coverage and the resulting spatial freedom for these surface-immobilized alkyl chains.  相似文献   
4.
Owing to the presence of multiple donor atoms such as N(1)H, C(2)SH, N(3), C(4)O, and CNC in the newly synthesized antimetabolite, namely, 5-dimethylaminomethyl-2-thiouracil, preferences of the hetero-atoms for coordination with metal ions like Cu(II), Zn(II), Cd(II), and Hg(II) were explored. The complexes isolated were characterized by chemical analysis and spectroscopic techniques. The ligand behaves as a bidentate/tetradentate chelating ligand. Invariably in all the complexes, one of the donor atoms is the soft C(2)SH. The kinetic and thermodynamic parameters for the thermal decomposition of the metal chelates were evaluated using (Coats–Redfern) and (Madhusudanan–Krishnan–Ninan) equations. The antimicrobial studies show that the copper(II) complexes are more active than the other complexes.  相似文献   
5.
6.
Silicon-based thiourea (SiliaBond® Thiourea) (Si-THU), a heterogeneous catalyst, has been applied to the highly selective C-S bond formation via Michael addition of thiols to α,β-unsaturated carbonyl compounds under solvent-free conditions at 55–60°C. The thio-Michael addition products were obtained in an excellent yield under optimised conditions. This methodology involving a metal-free as well as a metal scavenger catalyst has been found to be an alternative method for the thio-Michael addition reaction.  相似文献   
7.
An enhancement in catalytic alcohol oxidation activity is attributed to the presence of nitrogen heteroatoms on the external surface of a support material. The same Pd particles (3.1–3.2 nm) were supported on polymeric carbon–nitrogen supports and used as catalysts to selectively oxidize benzyl alcohol. The polymeric carbon–nitrogen materials include covalent triazine frameworks (CTF) and carbon nitride (C3N4) materials with nitrogen content varying from 9 to 58 atomic percent. With comparable metal exposure, estimated by X‐ray photoelectron spectroscopy, the activity of these catalysts correlates with the concentration of nitrogen species on the surface. Because the catalysts showed comparable acidic/basic properties, this enhancement cannot be ascribed to the Lewis basicity but most probably to the nature of N‐containing groups that govern the adsorption sites of the Pd nanoparticles.  相似文献   
8.
Mosquitoes are the most critical group of insects in the context of public health, since they transmit key parasites and pathogens, causing millions of deaths annually. Insecticides from natural products may boost the effectiveness of vector control programs. In this study, we tested silver nanoparticles (AgNPs) fabricated using the leaf extract of the orchid Zeuxine gracilis as reducing agent, and the microbial pesticide Bacillus sphaericus, against the mosquitoes Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The synthesis of AgNP was confirmed analyzing the excitation of surface Plasmon resonance using ultraviolet–visible (UV–Vis) spectrophotometry. SEM and TEM showed the irregular shapes of AgNPs. EDX spectroscopy, FTIR spectroscopy, X-ray diffraction and dynamic light scattering analysis were carried out. AgNPs were highly effective against the larvae of An. stephensi (LC50 = 8.48 µg/mL), Ae. aegypti (LC50 = 10.39 µg/mL) and Cx. quinquefasciatus (LC50 = 13.21 µg/mL), respectively. Combined treatments testing B. sphaericus with AgNPs were also effective against An. stephensi (LC50 = 12.32 µg/mL), Ae. aegypti (LC50 = 14.78 µg/mL) and Cx. quinquefasciatus (LC50 = 19.19 µg/mL). Overall, this study suggests that the orchid-synthesized AgNPs can be a rapid, environmentally safer bio-pesticide to be used in synergy with B. sphaericus to control mosquito vectors.  相似文献   
9.
A new series of 1,2,3-selenadiazoles containing an aryl or a 3-arylisoquinoline sulfanyl moiety at carbons 4 and 5, respectively, was prepared by cyclization of the respective semicarbazones in the presence of selenium(II) oxide and tetrahydrofuran at 70–75°C. Semicarbazones required for the reaction were obtained from 2-((3-arylisoquinolin-1-yl)sulfanyl)-1-phenylethanones, I, by a reaction with semicarbazide hydrochloride in ethanol/water mixture and potassium acetate base.  相似文献   
10.
Octadecyl (C18) modified metal oxide substrates, including titania, zirconia, hafnia, and alumina, are prepared using two types of silylating reagents, n-octadecyltrihydridosilane and n-octadecyltrichlorosilane. Fourier transform infrared (FTIR) and solid-state 29Si nuclear magnetic resonance (NMR) measurements are performed to examine the cross-linking of the silanes. Solid-state 13C NMR spectroscopy provides information about the conformation and mobility of surface-immobilized alkyl chains. Variable temperature FTIR investigations are carried out to study the influence of the organosilane precursors and metal oxides on the conformational order of the alkyl modified systems. It is found that grafting by means of n-octadecyltrichlorosilane yields higher grafting densities than surface modification with n-octadecyltrihydridosilane. Combined pyridine adsorption and diffuse reflectance infrared Fourier transform (DRIFT) measurements are performed on the titania and hafnia substrates to evaluate potential surface heterogeneities, i.e. Lewis and Brønsted sites. Differences in the alkyl chain conformational order within the series of C18 modified metal oxides are explained by the presence of island structures. The reduced C18 conformational order for the samples grafted with n-octadecyltrihydridosilane is traced back to the lower grafting density which in turn points to a lower reactivity of this silylating reagent. The most striking result is the higher conformational order of the C18 chains grafted in the present surface modified metal oxides when compared with silica-based systems. This finding is attributed to the lower porosity of the metal oxide supports along with more closely packed chains on the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号