首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
化学   91篇
晶体学   2篇
力学   1篇
数学   1篇
物理学   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  2000年   5篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有96条查询结果,搜索用时 291 毫秒
1.
Replacement of chloride in (PNP)RuCl, PNP = (tBu2PCH2SiMe2)2N, by Me3SiN3 gives a pre-redox adduct that, already at -30 degrees C, releases N2 to produce the mononuclear nonplanar Ru(IV) nitride (PNP)RuN, characterized by spectroscopic and X-ray methods. DFT calculations show the planar structure to be only 1.6 kcal/mol less stable, which explains the time-averaged simplicity of the 1H NMR spectrum, as well as the large vibrational amplitude of the nitride ligand.  相似文献   
2.
The reaction of [(Cymene)RuCl2]2 with the chelate LiHC(PPh2NPh)2 occurs to remove both chloride ligands, to furnish a cationic Ru(II) complex with the monoanionic ligand bound eta3, through two N and an sp3 carbon. This cation is also produced from the conjugate acid of the ligand H2C(PPh2NPh)2 because this molecule can serve as a Br?nsted base, to deprotonate the acidic carbon of another molecule of H2C(PPh2NPh)2. DFT calculations show an energy surface where (Cymene)RuHC(PPh2NPh)2L is more stable with a Ru-CH(PPh2NPh)2 bond and with L = Cl- or MeCN not coordinated to Ru, than to an eta2-HC(PPh2NPh)2 structure with coordinated L; this is tested experimentally. The greater tendency for this ligand to be coordinated eta3 vs analogous diketiminates is discussed. The nucleophilicity of Cgamma in structure 1, vs that of donors L = Cl- or MeCN, is evaluated to understand the preference of the bis(phosphinimino)methanide to be bidentate or tridentate.  相似文献   
3.
Reaction of 2,6-bis-(tBuNHCH2)2NC5H3 ("N2py") with RuCl2(PPh3)3 gives two isomers of Ru(N2py)Cl2(PPh3), 5, while reaction with RuCl2(DMSO)4 (DMSO = Me2SO) gives isomerically pure Ru(N2py)Cl2(DMSO), whose structure is reported. The PPh3 of 5 can be replaced by CO, P(OPh)3, or pyridine. The chlorides in Ru(N2py)Cl2(CO) can both be replaced by F3CSO3-. Isomer structure preferences are discussed, and the reaction of Ru(N2py)Cl2(pyridine) with O2 gives apparent oxidation of N2py to give the diimine.  相似文献   
4.
[reaction: see text] The use of a pyridinophane, a macrocycle composed of three pyridines linked, via all ortho positions through CH(2) or CH(2)CH(2) groups, bound to copper, gives good performance (rate and yield) catalyzing the conversion of substituted aliphatic olefins and PhINTs to aziridines. Advantages also derive from using CH(2)Cl(2) solvent and the weakly coordinating anions BAr(4)(-) (Ar = C(6)H(5) or 3,5-C(6)H(3)(CF(3))(2)). Reactions are complete in minutes at 20 degrees C, and yields are almost quantitative for olefins not bearing secondary allylic CH bonds; however, cis-cyclooctene gives only the aziridine despite the allylic hydrogens.  相似文献   
5.
The reaction of (R(2)PCH(2)SiMe(2))(2)NM (PNP(R)M; R = Cy; M = Li, Na, MgHal, Ag) with L(2)ReOX(3) [L(2) = (Ph(3)P)(2) or (Ph(3)PO)(Me(2)S); X = Cl, Br] gives (PNP(Cy))ReOX(2) as two isomers, mer,trans and mer,cis. These compounds undergo a double Si migration from N to O at 90 degrees C to form (POP(Cy))ReNX(2) as a mixture of mer,trans and fac,cis isomers. Additional thermolysis effects migration of CH(3) from Si to Re, along with compensating migration of halide from Re to Si. DFT calculations on various structural isomers support the greater thermodynamic stability of the POP/ReN isomer vs PNP/ReO and highlight the influence of the template effect on the reactivities of these species.  相似文献   
6.
Both (PNP)Re(H)(4) and (PNP)ReH(cyclooctyne) (PNP(i)(Pr) = ((i)Pr(2)PCH(2)SiMe(2))(2)N) react with alkylpyridines NC(5)H(4)R to give first (PNP)ReH(2)(eta(2)-pyridyl) and cyclooctene and then, when not sterically blocked, (PNP)Re(eta(2)-pyridyl)(2) and cyclooctane. The latter are shown by NMR, X-ray diffraction, and DFT calculations to have several energetically competitive isomeric structures and pyridyl N donation in preference to PNP amide pi-donation. DFT studies support NMR solution evidence that the most stable bis pyridyl structure is one that is doubly eta(2)- with the pyridyl N donating to the metal center. When both ortho positions carry methyl substituents, cyclooctane and the carbyne complex (PNP)ReH(tbd1;C-pyridyl) are produced. Excess 2-vinyl pyridine reacts with (PNP)Re(H)(4) preferentially at the vinyl group, to give 2-ethyl pyridine and the sigma-vinyl complex (PNP)ReH[eta(2)-CH=CH(2-py)]. The DFT and X-ray structures show, by various comparisons, the ability of the PNP amide nitrogen to pi-donate to an otherwise unsaturated d(4) Re(III) center, showing short Re-N distances consistent with the presence of pi-donation.  相似文献   
7.
Reaction of a bis‐tetrazinyl pyridine pincer ligand, btzp, with a vanadium(III) reagent gives not a simple adduct but dichlorido{3‐methyl‐6‐[6‐(6‐methyl‐1,2,4,5‐tetrazin‐3‐yl‐κN2)pyridin‐2‐yl‐κN]‐1,4‐dihydro‐1,2,4,5‐tetrazin‐1‐yl‐κN1}oxidovanadium(IV) acetonitrile 2.5‐solvate, [V(C11H10N9)Cl2O]·2.5CH3CN, a species which X‐ray diffraction reveals to have one H atom added to one of the two tetrazinyl rings. This H atom was first revealed by a short intermolecular N...Cl contact in the unit cell and subsequently established, from difference maps, to be associated with a hydrogen bond. One chloride ligand has also been replaced by an oxide ligand in this synthetic reaction. This formula for the complex, [V(Hbtzp)Cl2O], leaves open the question of both ligand oxidation state and spin state. A computational study of all isomeric locations of the H atom shows the similarity of their energies, which is subject to perturbation by intermolecular hydrogen bonding found in X‐ray work on the solid state. These density functional calculations reveal that the isomer with the H atom located as found in the solid state contains a neutral radical Hbtzp ligand and tetravalent d1 V center, but that these two unpaired electrons are more stable as an open‐shell singlet and hence antiferromagnetically coupled.  相似文献   
8.
Os(H)(3)ClL(2) (L = P(i)Pr(3)) reacts at 20 degrees C with vinyl fluoride in the time of mixing to produce OsHFCl([triple bond]CCH(3))L(2) and H(2). In a competitive reaction, the liberated H(2) converts vinyl fluoride to C(2)H(4) and HF in a reaction catalyzed by Os(H)(3)ClL(2). A variable-temperature NMR study reveals these reactions proceed through the common intermediate OsHCl(H(2))(H(2)C=CHF)L(2), via OsClF(=CHMe)L(2) and OsHCl(H(2))(C(2)H(4))L(2), all of which are detected. DFT(B3PW91) calculations of the potential energy and free energy at 298 K of possible intermediates show the importance of entropy to account for their thermodynamic accessibility. Calculations of unimolecular C-F cleavage of coordinated C(2)H(3)F confirms the high activation energy of this process. Catalysis by HF is thus suggested to account for the fast observed reactions, and scavenging of HF with NEt(3) changes the product to exclusively Os(H)(2)Cl(CCH(3))L(2). The analogous reaction of Os(H)(3)ClL(2) with H(2)C=CF(2) produces exclusively OsHFCl(=CCH(3))L(2) and HF, and the latter is again suggested to catalyze C-F scission via the observed intermediates Os(H)(2)Cl(CF(2)CH(3))L(2) and OsHCl(=CFMe)L(2).  相似文献   
9.
The ligand tripyridinedimethane (tpdm), consisting of three pyridine residues linked at their ortho carbons by two CH(2) groups, is shown to be a sterically flexible ligand capable of binding in a meridional arrangement in trigonal bipyramidal (tpdm) Cu(II)Cl(2) but binding in a facial arrangement in tetrahedral (tpdm) Cu(I)Cl. Nucleophilic substitution of chloride by (t)BuO(-) and PhC[triple bond]C(-) is possible, and deprotonation of the acidic benzylic protons does not take place because the resulting carbanion cannot achieve coplanarity with the aryl rings. RhCl(3) forms, with tpdm in boiling methanol, a 1:1 kinetic mixture of fac- and mer-isomers RhCl(3)(tpdm). The former isomerizes slowly at RT (room temperature) in DMSO solution into the latter with Rh-N bond dissociation as the rate-determining step.  相似文献   
10.
Synthesis, spectroscopic, and X-ray structural characterization of Ru2HnCl4-nL4 (n = 2, 3) and Ru2H2F2L4 (L = PiPr3) are reported. The structure of Ru2HCl3L4 is also reported. These are dinuclear species containing two five-coordinate, approximately square-pyramidal metal atoms. Halides, not hydrides, preferentially occupy bridging sites, and the RuXL2 terminal moiety shows limited fluxionality, but hydrides do not migrate between metals. The limited steric protection provided by PiPr3 is evident from the dimerization observed and from the fact that all these structures have rather small [symbol: see text]P-Ru-P (approximately 105 degrees). Also reported are RuHXL2 species with X = acetylacetonate, phenoxide, O3SCH3, and O3SCF3. Several examples of coordinated olefin to complexed carbene conversions are used to test the influence of anion X on reactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号