首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   4篇
  国内免费   3篇
化学   164篇
力学   4篇
数学   33篇
物理学   57篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   20篇
  2012年   24篇
  2011年   21篇
  2010年   16篇
  2009年   9篇
  2008年   23篇
  2007年   22篇
  2006年   10篇
  2005年   17篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1993年   6篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有258条查询结果,搜索用时 125 毫秒
1.
In an extension of studies of flameless atomizers for atomic-absorption spectrometry, an electrically heated tungsten-rhenium alloy wire loop was examined. Reduction of metallic salts to ground-state metal atoms was accomplished with the high temperature produced by the loop. Lead and nickel were investigated. Experimental parameters such as wavelength, slit width, atomization temperature and sheathing gas flow rate were optimized. Absolute detection limits of 6.6·10?10 and 1.2·10?10, and absolute sensitivities of 7·10?10 and 8·10?11 g of lead, were established for unenclosed and enclosed cells, respectively. The interferences of twenty cations and sixteen anions were studied; foreign cations generally enhanced the lead absorption by retarding its vaporization, allowing the slow detection system to respond more efficiently. Nickel was investigated as a representative less volatile metal; an absolute detection limit of 1.6·10?9 and an absolute sensitivity of 9·10?10 g of nickel were established.  相似文献   
2.
We present a soft lithographic method to fabricate multiphenotype cell arrays by capturing cells within an array of reversibly sealed microfluidic channels. The technique uses reversible sealing of elastomeric polydimethylsiloxane (PDMS) molds on surfaces to sequentially deliver various fluids or cells onto specific locations on a substrate. Microwells on the substrate were used to capture and immobilize cells within low shear stress regions inside channels. By using an array of channels it was possible to deposit multiple cell types, such as hepatocytes, fibroblasts, and embryonic stem cells, on the substrates. Upon formation of the cell arrays on the substrate, the PDMS mold could be removed, generating a multiphenotype array of cells. In addition, the orthogonal alignment and subsequent attachment of a secondary array of channels on the patterned substrates could be used to deliver fluids to the patterned cells. The ability to position many cell types on particular regions within a two dimensional substrate could potentially lead to improved high-throughput methods applicable to drug screening and tissue engineering.  相似文献   
3.
4.
The sodium/liquid ammonia cleavage of the dimethoxybenzenes and related substances, reported in large part by Birch in 1947, has been re-examined with use of improved techniques. Remarkable patterns of reactivity (e.g., ortho > meta > para) that he described are confirmed and extended. They are agreeably rationalized by means of a simple, approximate adaptation from MO theory.  相似文献   
5.
Picosecond time-resolved Stokes and anti-Stokes resonance Raman spectra of all-trans-beta-carotene are obtained and analyzed to reveal the dynamics of excited-state (S(1)) population and decay, as well as ground-state vibrational relaxation. Time-resolved Stokes spectra show that the ground state recovers with a 12.6 ps time constant, in agreement with the observed decay of the unique S(1) Stokes bands. The anti-Stokes spectra exhibit no peaks attributable to the S(1) (2A(g) (-)) state, indicating that vibrational relaxation in S(1) must be nearly complete within 2 ps. After photoexcitation there is a large increase in anti-Stokes scattering from ground-state modes that are vibrationally excited through internal conversion. The anti-Stokes data are fit to a kinetic scheme in which the C=C mode relaxes in 0.7 ps, the C-C mode relaxes in 5.4 ps and the C-CH(3) mode relaxes in 12.1 ps. These results are consistent with a model for S(1)-S(0) internal conversion in which the C=C mode is the primary acceptor, the C-C mode is a minor acceptor, and the C-CH(3) mode is excited via intramolecular vibrational energy redistribution.  相似文献   
6.
Abstract— The phototoxicity of argon laser irradiation was studied in aqueous suspensions of Porphyromonas endodontalis (American Type Culture Collection [ATCC] 35406), Porphyromonas gingivalis (ATCC 33277), Prevotella denticola (ATCC 33184) and two strains of Prevotella intermedia (ATCC 15033 and 49046), all "black-pigmented bacteria," BPB, that accumulate cellular porphyrins. Several of these species have been implicated in the etiology of Periodontol disease. Non-black-pigmented bacteria were also studied to test the specificity of irradiation as a potential photodynamic treatment for Periodontol infections. Cell suspensions were irradiated with an argon laser at fluences of 20–200 J/cm2. When cultured in hemin-supplemented media, ATCC 15033 was the most sensitive to irradiation. However, a second strain of the same species (ATCC 49046) was resistant. The photosensitivity of other species ranked ATCC 33277 > 35406 = 33184 = 35496. When hemin was replaced in media by hemoglobin, ATCC 33277 became resistant to irradiation. Protoporphyrin IX content in BPB cells was shown not to be a major factor determining photosensitivity. Oxygen was required during irradiation for BPB species to be affected. Non-black-pigmented bacteria were much less sensitive to irradiation than BPB.  相似文献   
7.
Picosecond Stokes and anti-Stokes Raman spectra are used to probe the structural dynamics and reactive energy flow in the primary cis-to-trans isomerization reaction of rhodopsin. The appearance of characteristic ethylenic, hydrogen out-of-plane (HOOP), and low-wavenumber photoproduct bands in the Raman spectra is instrument-response-limited, consistent with a subpicosecond product appearance time. Intense high and low-frequency anti-Stokes peaks demonstrate that the all-trans photoproduct is produced vibrationally hot on the ground-state surface. Specifically, the low-frequency modes at 282, 350, and 477 cm(-1) are highly vibrationally excited (T > 2000 K) immediately following isomerization, revealing that these low-frequency motions directly participate in the reactive curve-crossing process. The anti-Stokes modes are characterized by a approximately 2.5 ps temporal decay that coincides with the conversion of photorhodopsin to bathorhodopsin. This correspondence shows that the photo-to-batho transition is a ground-state cooling process and that energy storage in the primary visual photoproduct is complete on the picosecond time scale. Finally, unique Stokes vibrations at 290, 992, 1254, 1290, and 1569 cm(-1) arising from the excited state of rhodopsin are observed only at 0 ps delay.  相似文献   
8.
We report a comparison of theoretical and experimental proton affinities at nitrogen and oxygen sites within a series of small molecules. The calculated proton affinities are determined using the semiempirical methods AM 1, MNDO , and PM 3; the ab initio Hartree–Fock method at the following basis levels: 3-21G //3-21G , 3-21+G //3-21G , 6-31G *//6-31G *, and 6-31+G (d, p)//6-31G *; and Møller–Plesset perturbation calculations: MP 2/6-31G *//6-31G *, MP 3/6-31G *//6-31G *, MP 2/6-31G +(d, p)//6-31G *, MP 3/6-31G +(d, p)//6-31G *, and MP 4(SDTQ )/6-31G +G (d, p)//6-31G *. The semiempirical methods have more nonsystematic scatter from the experimental values, compared to even the minimal 3-21G level ab initio calculations. The thermodynamically corrected 6-31G *//6-31G * proton affinities provide acceptable results compared to experiment, and we see no significant improvement over 6-31G *//6-31G * in the proton affinities with any of the higher-level calculations. © 1992 John Wiley & Sons, Inc.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号