首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   5篇
数学   8篇
物理学   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1989年   1篇
  1988年   1篇
  1934年   2篇
  1920年   2篇
  1919年   1篇
排序方式: 共有15条查询结果,搜索用时 647 毫秒
1.
2.
3.
In 1977, Trotter and Moore proved that a poset has dimension at most 3 whenever its cover graph is a forest, or equivalently, has treewidth at most 1. On the other hand, a well-known construction of Kelly shows that there are posets of arbitrarily large dimension whose cover graphs have treewidth 3. In this paper we focus on the boundary case of treewidth 2. It was recently shown that the dimension is bounded if the cover graph is outerplanar (Felsner, Trotter, and Wiechert) or if it has pathwidth 2 (Biró, Keller, and Young). This can be interpreted as evidence that the dimension should be bounded more generally when the cover graph has treewidth 2. We show that it is indeed the case: Every such poset has dimension at most 1276.  相似文献   
4.
We consider the two-player, complete information game of Cops and Robber played on undirected, finite, reflexive graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if, after a move, a cop and the robber are on the same vertex. The minimum number of cops needed to catch the robber on a graph is called the cop number of that graph. Let c(g) be the supremum over all cop numbers of graphs embeddable in a closed orientable surface of genus g, and likewise ${\tilde c(g)}$ for non-orientable surfaces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over all cop numbers of graphs embeddable in this surface is finite. More precisely, Quilliot (1985) showed that c(g) ≤ 2g + 3, and Schröder (2001) sharpened this to ${c(g)\le \frac32g + 3}$ . In his paper, Andreae gave the bound ${\tilde c(g) \in O(g)}$ with a weak constant, and posed the question whether a stronger bound can be obtained. Nowakowski & Schröder (1997) obtained ${\tilde c(g) \le 2g+1}$ . In this short note, we show ${\tilde c(g) \leq c(g-1)}$ , for any g ≥ 1. As a corollary, using Schröder’s results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3, the maximum cop number of graphs embeddable in the Klein Bottle is at most 4, ${\tilde c(3) \le 5}$ , and ${\tilde c(g) \le \frac32g + 3/2}$ for all other g.  相似文献   
5.
The boxicity of a graph G = (V, E) is the least integer k for which there exist k interval graphs G i  = (V, E i ), 1 ≤ ik, such that ${E = E_1 \cap \cdots \cap E_k}$ . Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ of genus g is at most 5g + 3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.  相似文献   
6.
We study the structure of trees minimizing their number of stable sets for given order n and stability number α. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n ? α stars, each of size \({\lceil\frac{n-1}{n-\alpha}\rceil}\) or \({\lfloor\frac{n-1}{n-\alpha}\rfloor}\) , so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.  相似文献   
7.
8.
Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.  相似文献   
9.
A poset is (r+s)(\underline{r}+\underline{s})-free if it does not contain two incomparable chains of size r and s, respectively. We prove that when r and s are at least 2, the First-Fit algorithm partitions every (r+s)(\underline{r}+\underline{s})-free poset P into at most 8(r − 1)(s − 1)w chains, where w is the width of P. This solves an open problem of Bosek et al. (SIAM J Discrete Math 23(4):1992–1999, 2010).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号