首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2021年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
In this study, a facultative bacterium that converts fumarate to succinate at a high yield was isolated. The yield of biocon version was enhanced about 1.2 times by addition of glucose into culture medium at an initial concentration of 6 g/L. When the initial cell density was high (2 g/L), the succinate produced at pH 7.0 for initial fumarate concentrations of 30, 50, 80, and 100 g/L were 29.3, 40.9, 63.6, and 82.5 g/L, respectively, showing an increase with the initial fumarate concentration. The high yield of 96.8%/mole of fumarate in just 4 h was obtained at the initial fumarate concentration of 30 g/L. Comparing these values to those obtained with low cell culture (0.2 g/L), we found that the amount of succinate produced was similar, but the production rate in the high cell culture was about three times higher than was the case in the low cell culture. This strain converted fumarate to succinate at a rate of 3.5 g/L·h under the sparge of CO2.  相似文献   
2.
The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.  相似文献   
3.
A new acetic acid-producing microorganism, Acetobacter sp. RKY4, was isolated from Korean traditional persimmon vinegar, and we optimized the culture medium for acetic acid production from ethanol using the newly isolated Acetobacter sp. RKY4. The optimized culture medium for acetic acid production using this microorganism was found to be 40 g/L ethanol, 10 g/L glycerol, 10 g/L corn steep liquor, 0.5 g/L MgSO4·7H2O, and 1.0 g/L (NH4H2PO4. Acetobacter sp. RKY4 produced 47.1 g/L of acetic acid after 48 h of fermentation in a 250 mL Erlenmeyer flask containing 50 mL of the optimized medium.  相似文献   
4.
The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.  相似文献   
5.
Vascular smooth muscle cells (VSMCs) have remarkable plasticity in response to diverse environmental cues. Although these cells are versatile, chronic stress can trigger VSMC dysfunction, which ultimately leads to vascular diseases such as aortic aneurysm and atherosclerosis. Protein arginine methyltransferase 1 (Prmt1) is a major enzyme catalyzing asymmetric arginine dimethylation of proteins that are sources of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Although a potential role of Prmt1 in vascular pathogenesis has been proposed, its role in vascular function has yet to be clarified. Here, we investigated the role and underlying mechanism of Prmt1 in vascular smooth muscle contractility and function. The expression of PRMT1 and contractile-related genes was significantly decreased in the aortas of elderly humans and patients with aortic aneurysms. Mice with VSMC-specific Prmt1 ablation (smKO) exhibited partial lethality, low blood pressure and aortic dilation. The Prmt1-ablated aortas showed aortic dissection with elastic fiber degeneration and cell death. Ex vivo and in vitro analyses indicated that Prmt1 ablation significantly decreased the contractility of the aorta and traction forces of VSMCs. Prmt1 ablation downregulated the expression of contractile genes such as myocardin while upregulating the expression of synthetic genes, thus causing the contractile to synthetic phenotypic switch of VSMCs. In addition, mechanistic studies demonstrated that Prmt1 directly regulates myocardin gene activation by modulating epigenetic histone modifications in the myocardin promoter region. Thus, our study demonstrates that VSMC Prmt1 is essential for vascular homeostasis and that its ablation causes aortic dilation/dissection through impaired myocardin expression.Subject terms: Epigenetics, Cardiovascular diseases  相似文献   
6.
Enterococcus faecalis RKY1, a fumarate-reducing bacterium, was immobilized in an asymmetric hollow-fiber bioreactor (HFBR) for the continuous production of succinic acid. The cells were inoculated into the shell side of the HFBR, which was operated in transverse mode. Since the pH values in the HFBR declined during continuous operation to about 5.7, it was necessary to change the feed pH from 7.0 to 8.0 after 24 h of operation in order to enhance production of succinic acid. During continuous operation with a medium containing fumarate and glycerol, the productivity of succinate was 3.0–10.9 g/(L·h) with an initial concentration of 30 g/L of fumarate, 4.9–14.9 g/(L·h) with 50 g/L of fumarate, and 7.2–17.1 g/(L·h) with 80 g/L of fumarate for dilution rates between 0.1 and 0.4 h−1. The maximum productivity of succinate obtained by the HFBR (17.1 g of succinate /[L·h]) was 1.7 times higher than that of the batch bioconversions (9.9 g of succinate /[L·h]) with 80 g/L of fumarate. Furthermore, the long-term stability of the HFBR was demonstrated with a continuously efficient production of succinate for more than 15 d (360 h).  相似文献   
7.
The fungal production of fumaric acid using rice bran and subsequent bacterial conversion of succinic acid using fungal culture broth were investigated. Since the rice bran contains abundant proteins, amino acids, vitamins, and minerals, it is suitable material that fungi use as a nitrogen source. The effective concentration of rice bran to produce fumaric acid was 5 g/L. A large amount of rice bran caused excessive fungal growth rather than enhance fumaric acid production. In addition, we could produce fumaric acid without the addition of zinc and iron. Fungal culture broth containing appro × 25 g/L of fumaric acid was directly employed for succinic acid conversion. The amount of glycerol and yeast extract required for succinic acid conversion was reduced to 70 and 30%, respectively, compared with the amounts cited in previous studies.  相似文献   
8.
Lactic acid production through cell-recycle repeated-batch bioreactor   总被引:1,自引:0,他引:1  
The effect of various nitrogen sources on cell growth and lactic acid production was investigated. The most effective nitrogen source was yeast extract; more yeast extract gave higher cell growth and lactic acid productivity. Yeast extract dosage and cell growth were proportional up to a yeast extract concentration of 30 g/L, and lactic acid productivity was linearly correlated up to a yeast extract dosage of 25 g/L. However, increasing the yeast extract content raises the total production cost of lactic acid. Therefore, we attempted to find the optimum yeast extract dosage for a repeated-batch operation with cell recycling. The results show that when using Enterococcus faecalis RKY1 only 26% of the yeast extract dosage for a conventional batch fermentation was sufficient to produce the same amount of lactic acid, whereas the lactic acid concentration in the product stream (92–94 g/L) and lactic acid productivity (6.03–6.20 g/[L·h]) were similar to those of a batch operation. Furthermore, long-term stability was established.  相似文献   
9.
Calbindin, a major Ca2+ buffer in dentate granule cells (GCs), plays a critical role in shaping Ca2+ signals, yet how it regulates neuronal function remains largely unknown. Here, we found that calbindin knockout (CBKO) mice exhibited dentate GC hyperexcitability and impaired pattern separation, which co-occurred with reduced K+ current due to downregulated surface expression of Kv4.1. Relatedly, manipulation of calbindin expression in HT22 cells led to changes in CaMKII activation and the level of surface localization of Kv4.1 through phosphorylation at serine 555, confirming the mechanism underlying neuronal hyperexcitability in CBKO mice. We also discovered that Ca2+ buffering capacity was significantly reduced in the GCs of Tg2576 mice to the level of CBKO GCs, and this reduction was restored to normal levels by antioxidants, suggesting that calbindin is a target of oxidative stress. Our data suggest that the regulation of CaMKII signaling by Ca2+ buffering is crucial for neuronal excitability regulation.Subject terms: Cellular neuroscience, Intrinsic excitability  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号