首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Preparation of liquid epoxidized natural rubber (ENR) was made by oxidative depolymerization of ENR in latex stage without loss of epoxy group. Epoxidation of fresh natural rubber latex, which was purified by deproteinization with proteolytic enzyme and surfactant, was carried out with freshly prepared peracetic acid. The glass transition temperature (Tg) and gel content of the rubbers increased after the epoxidation, both of which were dependent upon an amount of peracetic acid. The gel content was significantly reduced by oxidative depolymerization of the rubber with (NH4)2S2O8 in the presence of propanal. The resulting liquid epoxidized rubber (Mn≈104) was found to have well-defined terminal groups, i.e. aldehyde groups and α-β unsaturated carbonyl groups. The novel rubber was applied to transport Li+ as an ionic conducting medium, that is, solid polymer electrolyte.  相似文献   
2.
A thermophilic Anoxybacillus sp. strain JT-12, isolated from soil, produced acidic xylotriose, 4-O-methyl-α-d-glucuronosyl-xylotriose (MeGlcAX3), as a main product from birchwood xylan and accumulated them in the culture under optimum conditions at pH 7.0 and 55 °C using 0.75% (w/v) birchwood xylan as a carbon source for 42–72 h. The acidic xylotriose was purified by ethanol precipitation and high-performance liquid chromatography using NH2 Lichosher® 100 column. The results of electrospray ionization mass spectrometry, mass to charge ratio (m/z) 603.23, confirmed that the purified sample was acidic xylotriose that had benefits and applications in many fields.  相似文献   
3.
Nano-matrix structure was formed by graft-copolymerization of styrene onto urea-deproteinized natural rubber (U-DPNR) latex. The grafted U-DPNR was characterized by FT-IR spectroscopy, 1H NMR spectroscopy and transmission electron microscopy. Conversion and grafting efficiency of styrene were more than 90% under the best condition of the graft-copolymerization. In transmission electron micrograph of film specimen stained by OsO4, it was found that natural rubber particle of about 0.5 μm in diameter was dispersed in polystyrene matrix of about 15 nm in thickness. The conversion and grafting efficiency for the grafted U-DPNR were compared with those for a control sample prepared from enzymatic deproteinized natural rubber (E-DPNR) with styrene.  相似文献   
4.
Preparation of natural rubber (NR) with a soft nanomatrix structure was made by graft-copolymerization of butyl acrylate (BA) onto deproteinized natural rubber with tert-butyl hydroperoxide/tetraetylenepentamine in latex stage. The resulting graft-copolymer of deproteinized natural rubber and poly (butyl acrylate) (DPNR-graft-PBA) was characterized by Fourier-transform infrared spectroscopy. Conversion and grafting efficiency of BA were dependent upon BA concentration, which were more than 90?mol% under a suitable condition of the graft-copolymerization. Morphology of DPNR-graft-PBA was observed by transmission electron microscopy after staining film specimens with I2 vapor for 5?min. The NR particles of about 0.5?μm in diameter were dispersed in PBA matrix of about 15?nm in thickness. Storage modulus and loss tangent of DPNR-graft-PBA were measured, and they were related with the soft nanomatrix structure. The tensile strength and elongation at break decreased as monomer concentration increased.  相似文献   
5.
Multi‐scaled microstructures induced by natural impurities (i.e., proteins, phospholipids, carbohydrates) in natural rubber (NR) were investigated by synchrotron small‐angle X‐ray scattering (SAXS), wide‐angle X‐ray diffraction (WAXD), and optical microscopy using several kinds of untreated and chemically treated un‐vulcanized samples. These microstructures include large aggregates (size less than 50 μm), well‐defined crystals (size less than a few 10 μm), and micelles (size much less than 10 μm). In un‐vulcanized NR samples, even though the concentrations of natural impurities are relatively low, the dispersion of these microstructures significantly affects the mechanical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2456–2464, 2008  相似文献   
6.
Summary: Three different methods of deproteinization, i.e. saponification, surfactant washing and enzymatic treatment were employed to unravel the effect of deproteinized on the properties of natural rubber (NR) latex. The cleavage of proteins in NR latex was found to proceed with concomitant formation of low molecular weight polypeptides. This results in a lowering in gel formation of the enzyme-treated latex, indicating modification of the remaining proteins at the rubber chain-end. Washing NR latex with surfactant would efficiently reduce and remove proteins from NR latex particles through denaturation and transferring them to the serum phase. The relatively stable gel formed during storage of surfactant-washed NR latex is an indication of the absence of branch formation of proteins at the rubber molecule terminal. Saponification by strong alkali would hydrolyze the proteins and phospholipids adsorbed on the latex particle surface. The reason of the significantly higher gel formed in saponified NR latex is still not clear. The present study shows that deproteinization treatments result in modification of the proteins at the surface of NR latex particles and also those freely-suspended in the serum. The cleavage or the denaturation of the rubber proteins during purification by washing has a profound effect on the properties of the deproteinized NR latex upon storage, in particular the thermal oxidative aging properties of the rubber obtained.  相似文献   
7.
Recently, gel content has been considered as a standard property for evaluating commercial grade natural rubber (NR). In this study, NR containing various amounts of gel was prepared by accelerated storage hardening as a model to clarify the influence of gel content on the physical properties of both unfilled and carbon black filled vulcanizates. Furthermore, the NR samples were investigated to determine the effect of gel fraction on Mooney viscosity and the structure of the gel after mastication. The results revealed that Mooney viscosity was related to the percentage of gel fraction that has been proven to be the result of interactions between proteins and phospholipids at chain ends. After mastication, although the gel fraction of NR can be decomposed to ∼0% w/w, the interactions of proteins and phospholipids at the chain ends still existed, corresponding to the gel content of the raw rubber. In the case of unfilled vulcanizates, the gel content showed no effect on cure characteristics, crosslink density and ultimate tensile strength, whereas the upturn of stress occurred at a smaller strain when the gel content increased. However, in the case of carbon black filled vulcanizates, the gel content played a dominant role in the carbon black dispersion, which was poorer when gel content increased, contributing to a decrease of crosslink density and ultimate tensile strength.  相似文献   
8.
Glucose at various concentrations was incorporated into sugar free purified natural rubber (PNR) latex to model the effect of carbohydrate on the basic characteristics and physical properties of natural rubber (NR). PNR samples treated with various concentrations of glucose were characterized for the basic properties of unvulcanized NR, i.e., gel content, molecular weight distribution and Mooney viscosity to evaluate the effect of sugar on these parameters. In addition, the effect of glucose on the physical properties of vulcanizates derived using sulfur and peroxide vulcanization was investigated. Glucose was shown to affect the viscosity of unvulcanized NR and the discoloration of vulcanized NR. Moreover, glucose was found to have a strong effect on crosslink density, as well as tensile and dynamic properties of sulfur vulcanizates, while those properties of peroxide vulcanizates was not much affected by glucose.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号