首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   14篇
力学   1篇
  2019年   1篇
  2014年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
排序方式: 共有15条查询结果,搜索用时 410 毫秒
1.
The regioselective alkoxycarbonylation of phenylacetylene into various cinnamate esters was achieved with a catalyst system formed from palladium (II), 1,4‐bis(diphenylphosphino) butane (dppb) and salicylborate complex in acetonitrile as a solvent. The influence of various parameters on the overall conversion of phenylacetylene and the selectivity of the reaction were studied systematically by varying the type of palladium complex, acids promoter, CO pressure, temperature and the reaction time. This investigation allowed us to obtain the predominant formation of cinnamate esters with excellent selectivity (90–96%). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
The aminocarbonylation and alkoxycarbonylation reactions of terminal alkynes took place smoothly and efficiently using a catalyst system Pd(OAc)2–dppb–p‐TsOH? CH3CN? CO under relatively mild experimental conditions. The catalytic system was tested and optimized using two different nucleophiles: alcohols and amines. Phenylacetylene (1a) was considered as an alkyne along with diisobutylamine (2b1) and methanol (2c1) as nucleophiles. The results showed significant differences in the conversion of 1a and in the selectivity towards the gem or trans unsaturated esters or amides with these nucleophiles. The effects of the type of palladium catalysts, the type of ligands, the amount of dppb and the solvents were carefully studied. With diisobutylamine (2b1), excellent regioselectivity towards the 2‐acrylamides (gem isomer, 3ab1) was almost always observed, while trans‐α,β‐unsaturated esters 4ac1 was the predominant product with methanol (2c1) as a nucleophile. This remarkable sensitivity in the selectivity of the reaction indicates two different possible mechanistic pathways for these carbonylation reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
The application of a recently proposed microanalytical flow-through system for on-line sequential extraction of heavy metals from solid samples of environmental interest is described. Using various extraction schemes (a nitric acid scheme, a two-stage extraction scheme using two reagents applied in the BCR procedure) and comparison with the common batch sequential BCR procedure, the suitability of the system for fast screening of solid environmental samples is demonstrated. By pumping leaching agents sequentially through the sample held in a micro cartridge, the different metal fractions present can be assessed in less than an hour. Method evaluation was performed using SRM 1648 urban particulate matter and BCR 701 lake sediment reference material certified for extractable metals. The need for and design of laboratory internal reference material suitable for simulating the natural (dynamic) processes of metal release into the environment is also discussed. For the first time correlation is sought between fractionation techniques and physiologically based methods for assessment of the bioaccessibility of metals in biomatrices.  相似文献   
4.
In this paper, a novel concept is presented for automatic microsampling and continuous monitoring of metal ions in soils with minimum disturbance of the sampling site. It involves a hollow-fiber microdialyser that is implanted in the soil body as a miniaturized sensing device. The idea behind microdialysis in this application is to mimic the function of a passive sampler to predict the actual, rather than potential, mobility and bioavailability of metal traces. Although almost quantitative dialysis recoveries were obtained for lead ( 98%) from aqueous model solutions with sufficiently long capillaries (l 30 mm, 200 m i.d.) at perfusion rates of 2.0 L min–1, the resistance of an inert soil matrix was found to reduce metal uptake by 30%. Preliminary investigation of the potential of the microdialysis analyser for risk assessment of soil pollution, and for metal partitioning studies, were performed by implanting the dedicated probe in a laboratory-made soil column and hyphenating it with electrothermal atomic absorption spectrometry (ETAAS), so that minute, well-defined volumes of clean microdialysates were injected on-line into the graphite furnace. A noteworthy feature of the implanted microdialysis-based device is the capability to follow the kinetics of metal release under simulated natural scenarios or anthropogenic actions. An ancillary flow set-up was arranged in such a way that a continuous flow of leaching solution — mild extractant (10–2 mol L–1 CaCl2), acidic solution (10–3 mol L–1 HNO3), or chelating agent (10–4 or 10–2 mol L–1 EDTA) — was maintained through the soil body, while the concentration trends of inorganic (un-bound) metal species at the soil-liquid interface could be monitored at near real-time. Hence, relevant qualitative and quantitative information about the various mobile fractions is obtained, and metal-soil phase associations can also be elucidated. Finally, stimulus-response schemes adapted from neurochemical applications and pharmacokinetic studies are to be extended to soil research as an alternative means of local monitoring of extraction processes after induction of a chemical change in the outer boundary of the permselective dialysis membrane.  相似文献   
5.

Interests in biosurfactant in industrial and environmental applications have increased considerably in recent years, owing to their potential benefits over synthetic counterparts. The present study aimed at analyzing the stability and oil removal efficiency of a new lipopeptide biosurfactant produced by Paenibacillus sp. D9 and its feasibility of its use in biotechnological applications. Paenibacillus sp. D9 was evaluated for optimal growth conditions and improved production yield of lipopeptide biosurfactant with variations in different substrate parameters such as carbon (C), nitrogen (N), C:N: ratio, metal supplements, pH, and temperature. Enhanced biosurfactant production was observed when using diesel fuel and ammonium sulfate as carbon and nitrogen source respectively. The maximum biosurfactant yield of 4.11 g/L by Paenibacillus sp. D9 occurred at a C/N ratio of 3:1, at pH 7.0, 30 °C, 4.0 mM MgSO4, and 1.5% inoculum size. The D9 biosurfactant was found to retain surface-active properties under the extreme conditions such as high thermal, acidic, alkaline, and salt concentration. The ability to emulsify further emphasizes its potential usage in biotechnological application. Additionally, the lipopeptide biosurfactant exhibited good performance in the degradation of highly toxic substances when compared with chemical surfactant, which proposes its probable application in biodegradation, microbial-enhanced oil recovery or bioremediation. Furthermore, the biosurfactants were effective in a test to stimulate the solubilization of hydrophobic pollutants in both liquid environments removing 49.1 to 65.1% diesel fuel including hydrophobic pollutants. The study highlights the usefulness of optimization of culture parameters and their effects on biosurfactant production, high stability, improved desorption, and solubilization of hydrophobic pollutants.

  相似文献   
6.
The nickel reactive electrode (reactrode) is a solid bulk-modified composite electrode for the selective voltammetric determination of nickel in aqueous solutions. This reactrode offers the possibility for nickel determination in the range from 0.7 ng/ml to 1 g/ml. The 3 detection limit is 0.7 ng/ml.  相似文献   
7.
Acetals were formed under hydroformylation conditions of alkenes in alcohols as solvents. The hydroformylation process is combined with acetalization in a one-pot reaction leading to acetals as final products. These reactions sequences were catalyzed by the simple rhodium catalyst RhCl3·3H2O. The effects of the addition of different types and amounts of phosphine and phosphite ligands were carefully studied in order to improve the regioselectivity of the reaction.  相似文献   
8.
The poor water solubility of many drugs requires a specific formulation to achieve a sufficient bioavailability after oral administration. Suspensions of small drug particles can be used to improve the bioavailability. We here show that the fungal hydrophobin SC3 can be used to make suspensions of water insoluble drugs. Bioavailability of two of these drugs, nifedipine and cyclosporine A (CyA), was tested when administered as a SC3-based suspension. SC3 (in a 1:2 (w/w) drug:SC3 ratio) or 100% PEG400 increased the bioavailability of nifedipine to a similar degree (6 ± 2- and 4 ± 3-fold, respectively) compared to nifedipine powder without additives. Moreover, SC3 (in a 7:1 (w/w) drug:hydrophobin ratio) was as effective as a 20-fold diluted Neoral® formulation by increasing bioavailability of CyA 2.3 ± 0.3-fold compared to CyA in water. Interestingly, using SC3 in the CyA formulation resulted in a slower uptake (p < 0.001 in Tmax) of the drug, with a lower peak concentration (Cmax 1.8 mg ml?1) at a later time point (Tmax 9 ± 2 h) compared to Neoral® (Cmax 2.2 mg ml?1; Tmax 3.2 ± 0.2). Consequently, SC3 will result in a more constant, longer lasting drug level in the body. Taken together, hydrophobins are attractive candidates to formulate hydrophobic drugs.  相似文献   
9.
The basic challenge associated with the design of vehicle suspension system is the attainment of an optimal trade-off between the various design objectives. This study presents the design of proportional-integral-derivative (PID) controller for a quarter-car active vehicle suspension system (AVSS) using evolutionary algorithms (EA) such as the particle swarm optimization (PSO), genetic algorithm (GA) and differential evolution (DE). Each of the EA-based PID controllers showed overall improvement in suspension travel, ride comfort, settling time and road holding from the manually tuned controller and the passive vehicle suspension system. These improvements were, however, achieved at the cost of increased actuator force, power consumption and spool-valve displacement. DE-optimized PID control resulted in the best minimized suspension performance, followed by the GA and PSO, respectively. Frequency-domain analysis showed that all the signals were attenuated within the whole body vibration frequency range and the EA-optimized controllers had RMS frequency weighted body acceleration of the vehicle within allowable limits for vibration exposure. Robustness analysis of the DE-optimized PID-controlled AVSS to model uncertainties is carried out in the form of variation in vehicle sprung mass loading, tyre stiffness and speed.  相似文献   
10.
Rhodium (I) associated with [bis(2,4-di-tert-butyl) pentaerythritol] diphosphite (I) as a ligand represents an active catalyst system for highly regioselective hydroformylation of various alkenes. The commercially available bis(2,4-di-tert-butyl)pentaerythritol diphosphite (alkanox P-24) (I), which has been used so far as an antioxidant in the stabilization of polymers, was used as a diphosphite ligand for the selective hydroformylation reaction of olefins. Excellent selectivity towards linear aldehydes and excellent conversions were achieved in the hydroformylation of alkenes. The hydroformylation reaction was applied to various olefinic substrates including the internal alkenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号