首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
数学   1篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
We perform ab initio calculations to investigate Ni13 clusters reaction under an oxygen atmosphere. We dynamically evaluate the effect on structural, electronic, and magnetic properties for pristine and oxidated clusters. As oxygen chemisorption increases, the pristine icosahedral cluster tends to adopt a cubic sodium chloride configuration, resistant to further oxidation. Although each chemisorbed O atom draws one electron, the cluster magnetization stays in the 4-8 μ B range, with magnetic moment localized at Ni atoms. Oxygen effect on the electronic structure is to hybridize O(p) − Ni(s, d) among low-lying occupied states and to induce a HOMO-LUMO gap opening, while also shifting downwards the electronic band edges, making them favorably aligned with photocatalytic reactions.  相似文献   
2.
Jürgen Pannek  Enzo Frazzon 《PAMM》2014,14(1):905-906
Supply chains networks describe the flow of material, energy and information from their sources to end costumers. Typically, such a network consists of several stages such as suppliers, manufacturers and retailers, which contribute to the completion of a product. Here, we restrict ourselves to one arc from supplier to costumer. Instead of known strategies such as postponement, we apply a model predictive control scheme to deal with the optimal steering problem of the considered arc in a distributed way. To this end, we assign one controller to each stage along the considered arc. Since the stages may represent different companies, local cost criteria are imposed, which are optimized subject to local and global constraints while communicating with neighbors. Additionally, we discuss the applicability of such an approach regarding information requirements and respective policies of companies. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
An organized multilayer was constructed by the layer-by-layer technique in which alternating layers of metalloporphyrin and dioctadecyldimethylammonium bromide bilayers were deposited onto an indium tin oxide surface electrode. The porphyrin molecules that are organized in the different layers showed a strong electroactivity with a well-defined electrochemical process. In LbL, electroactivity could be explained only by the occurrence of electron hoping. Thus, total Kohn?CSham density functional theory (KS-DFT) was performed to better understand the conditions responsible for the electroactivity of the metalloporphyrin layers intercalated by an insulating material. Total KS-DFT theory involves local density approximation energy calculations based on spin-polarized variant of KS-DFT theory. The results revealed a magnetization switching of the metalloporphyrin induced by the interaction with the surfactant bilayer accompanied by spin polarization of the porphyrin-interacting surfactant molecule. Although discrete, the surfactant magnetization had significant repercussions on the electron conductivity. Calculations also demonstrated loss of porphyrin symmetry promoted by a parent surfactant with a shorter hydrocarbon chain, ditetradecyldimethylammonium bromide. The calculation results were corroborated by experimental results obtained by the electron paramagnetic resonance and magnetic circular dichroism techniques.  相似文献   
4.
5.

Background

The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product.

Results

In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (Mt CS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant Mt CS. The bifunctionality of Mt CS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and Mt CS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting.

Conclusion

This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of Mt CS and should thus pave the way for the rational design of antitubercular agents.
  相似文献   
6.

Background  

Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号