首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
In a new hydrogen‐bonded three‐dimensional complex, [CuCl(NO3)(C10H8N2)(H2O)], the Cu atom has an elongated tetra­gonal octa­hedral environment, with two 2,2′‐bipyridyl N atoms, one nitrate O atom and one Cl atom forming the equatorial plane, and a second O atom of the nitrate anion and a water mol­ecule in the axial positions. The complex mol­ecules are linked to form a three‐dimensional supra­molecular array by hydrogen‐bonding inter­actions both between the water O atom and nitrate O atoms, and between the water O atom and the Cl atom of a neighboring mol­ecule.  相似文献   
2.
The new triply-bridged dinuclear copper(II) complexes, [Cu2(μ-O2CH)(μ-OH)2(dpyam)2](ClO4) · H2O (1), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(dpyam)2](S2O8) (2), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(bpy)2](NO3)2 (3), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(phen)2](BF4)2 · 0.5H2O (4), [Cu2(μ-O2CCH2CH3)(μ-OH)(μ-OH2)(phen)2](NO3)2 (5) and [Cu2(μ-O2CCH3)(μ-OH)(μ-Cl)(bpy)2]Cl · 8.5H2O (6) (dpyam = di-2-pyridylamine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized crystallographically and also their spectroscopic and magnetic properties have been studied. A structural classification of this type of dimers, based on the data obtained from X-ray diffraction analysis in the present work and those reported in the literature has been performed. In these complexes, the local geometry around the copper centre is generally a distorted square pyramid and distorted trigonal bipyramid with different degrees of distortion. The global geometry of the dinuclear complexes can be described in terms of the relative arrangement of the two five-coordinate environments, giving rise to different classes (A–F) of complexes. The most logical explanations have been provided for each class describing different magnetic interactions. Practically, there is a clear correlation between structural data and J values of the class B complexes. Extended Hückel calculations were performed for the present complexes 16, as well as for some other class B complexes, showing the different molecular orbitals involved in their corresponding frontier orbitals, together with their energy. The results are found to be useful for the proper interpretation and correlation of the magnetic data and the dinuclear structure of the present complexes.  相似文献   
3.
The conformational analysis of artemisinin by molecular dynamics and quantum chemistry calculations revealed the existence of seven energy minima with specific interconversion pathways. Among the seven conformers, only , and were able to undergo bond rearrangements upon Fe(2+) interaction. These rearrangements were due to a peculiar puckering of the trioxane ring that brings its three oxygen atoms in an ideal geometrical position for interacting with Fe(2+) ions, promoting an electronic redistribution in the molecule. A rapid molecule rearrangement led to a stable energy minimum structure with an additional ring that is similar to a plant metabolite. Our results suggest an alternative pathway for generating toxic radical chemical species for the malaria parasite, where artemisinin is not toxic by itself but rather is an intermediate for molecular partners that generate radical structures deleterious for the parasite proteins, after electron transfers from the Fe(2+)/artemisinin complex.  相似文献   
4.
In the present work we used quantum mechanics calculations to predict the two pKa’s of 5-hydrotryptamine (5-HT). Proton dissociation reaction succeeded to predict the experimental pKa1 corresponding to ionization of the protonated amine group but failed for pKa2 corresponding to ionization of the 5-hydroxyl group. For pKa2, a cluster-continuum model including three water molecules in the first hydration shell around 5-hydroxyl and 5-hydroxide groups enabled us to reproduce the experimental pKa2 value. Furthermore, we demonstrated that specific conformations of acid/base pair of 5-HT is critical to predict accurately the experimental pKa’s of the flexible 5-HT molecule.  相似文献   
5.
In the structure of the title complex, [Cu(C2O4)(C10H9N3)(H2O)]·H2O, the CuII atom displays a square‐pyramidal geometry, being coordinated by two N atoms from the di‐2‐pyridylamine ligand, two O atoms from the oxalate group and one O atom of a water mol­ecule. The complex mol­ecules are linked to form a three‐dimensional supra­molecular array by hydrogen‐bonding inter­actions between coordinated/uncoordinated water mol­ecules and the uncoordinated oxalate O atoms of neighboring mol­ecules.  相似文献   
6.
Nanocrystalline mesoporous TiO2 was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO2 had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m2/g. The photocatalytic activity of synthesized TiO2 was evaluated with photocatalytic H2 production from water-splitting reaction. The photocatalytic activity of synthesized TiO2 treated with appropriate calcination temperature was considerably higher than that of commercial TiO2 (Ishihara ST-01). The utilization of mesoporous TiO2 photocatalyst with high crystallinity of anatase phase promoted great H2 production. Furthermore, the reaction temperature significantly influences the water-splitting reaction.  相似文献   
7.
The two new title complexes, [Cu(N3)(dpyam)2]PF6 (dpyam is di‐2‐pyridylamine, C10H11N3), (I), and [Cu(N3)(dpyam)2]Cl·4H2O, (II), respectively, have been characterized by single‐crystal X‐ray diffraction. Both complexes display a distorted square‐pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the one‐dimensional supra­molecular architecture is assembled via hydrogen‐bonding inter­actions between the amine N atom and terminal azide N atoms and the F atoms of the PF6 anion. For complex (II), hydrogen‐bonding inter­actions between the amine N atom, the Cl anion and water O atoms result in a two‐dimensional lattice.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号