首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   1篇
  2016年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 140 毫秒
1
1.

This study has concerned the development of polymer composite electrolytes based on poly(vinyl butyral) (PVB) reinforced with calcinated Li/titania (CLT) for use as an electrolyte in electrochemical devices. The primary aim of this work was to verify our concept of applying CLT-based fillers in a form of nano-backbone to enhance the performance of a solid electrolyte system. To introduce the network of CLT into the PVB matrix, gelatin was used as a sacrificial polymer matrix for the implementation of in situ sol–gel reactions. The gelatin/Li/titania nanofiber films with various lithium perchlorate (LiClO4) and titanium isopropoxide proportions were initially fabricated via electrospinning, and ionic conductivities of electrospun nanofibers were then examined at 25 °C. In this regard, the highest ionic conductivity of 2.55 × 10−6 S/cm was achieved when 10 wt% and 7.5 wt% loadings of LiClO4 and titania precursor were used, respectively. The nanofiber film was then calcined at 400 °C to remove gelatin, and the obtained CLT film was then re-dispersed in solvated PVB-lithium bis(trifluoromethanesulfonyl)imide (PVB-LiTFSI) solution before casting to obtain reinforced composite solid electrolyte film. The reinforced composite PVB polymer electrolyte film shows high ionic conductivity of 2.22 × 10−4 S/cm with a wider electrochemical stability window in comparison to the one without nanofillers.

  相似文献   
2.
The boron dipyrromethene (BODIPY) triads consisting of two triphenylamine units as electron donor (D) and BODIPY core as electron acceptor (A; B3 , and B4 ) have been synthesized using facile palladium cross‐coupling reactions to broaden the absorption of the BODIPY dyes. All dyes and intermediates were characterized by 1H NMR, 11B NMR, 13C NMR, and 19F NMR spectroscopies, UV–Vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and time‐dependent density functional theory calculations. It was found that an increase in conjugation to the BODIPY core systematically extended the absorption and emission wavelength maxima. As a consequence, B4 containing the D–π–A–π–D structure, exhibited the longest absorption and emission maxima at 597 and 700 nm, respectively, with 1.8 eV in optical bandgap. The 96 nm red‐shifted absorption of B4 as compared to the unsubstituted BODIPY ( B1 ) indicated the effective electronic communication between triphenylamine and BODIPY. This suggested that the proper alignment of triphenylamine and BODIPY triad could lead to broader absorption and suitable low energy bandgap. Furthermore, the molecular modeling has been employed to analyze the electronic and optical properties of the dyes. We found that the optical, electrochemical, and theoretical bandgaps of all dyes were in good agreement.  相似文献   
3.
This research work has concerned a study on toughness of PVC/natural rubber (NR) blends compatibilized with epoxidized natural rubber (ENR). The aim of this work was to investigate the effect of degree of epoxidation on morphology and mechanical properties of the blends. Epoxidized natural rubber with a variety of epoxidation contents were prepared by reacting the NR latex with formic acid and hydrogen peroxide at various chemical contents. Chemical structure and epoxidation content of epoxidized natural rubber were evaluated by FTIR and 1H-NMR techniques. After that, three grades of ENR with epoxidation contents of 15, 25 and 42 % (by mole) were further used for blending with PVC and NR in an internal mixer at 60 rpm and at 170 °C. From tensile and impact tests, it was found that tensile elongation and impact strength of the materials remarkably increased with degree of epoxidation. On the other hand, tensile strength and modulus of the materials rarely changed with the epoxidation content. An increase in toughness of the blends with epoxidation content was related to a better molecular interaction between PVC and ENR as suggested by torque-time curves of the materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号