首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
化学   13篇
晶体学   1篇
数学   1篇
物理学   4篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - This paper presents the comprehensive thermodynamic modelling to compare the performance and optimization of single-stage NH3–H2O-type absorption...  相似文献   
2.
3.
Here, the stepwise assembly of an electroactive bionanostructure on a molecular printboard is described. The system consists of a cyclodextrin receptor monolayer (molecular printboard) on glass, a divalent linker, streptavidin (SAv), and biotinylated cytochrome c (cyt c). The divalent linker consists of a biotin moiety for binding to SAv and two adamantyl moieties for supramolecular host-guest interaction at the cyclodextrin molecular printboard. The binding of biotinylated cyt c onto a SAv layer bound to preadsorbed linker appeared to be highly specific. The coverages of cyt c as assessed by UV-vis spectroscopy and scanning electrochemical microscopy (SECM) appeared to be identical indicating that all cyt c units remained active. Moreover, the coverage values corresponded well with an estimate based on steric requirements, and the binding stoichiometry was therefore found to be by two biotin moieties of cyt c per one SAv molecule.  相似文献   
4.
Prediction of bulk metallic glass (BMG) forming compositions has always been a challenge due to thermodynamic and kinetic constraints. In the present investigation, a parameter based on the enthalpy of chemical mixing (?Hchem) and the mismatch entropy (?Sσ/kB) has been used to correlate with glass forming ability in some Zr based BMGs. The new thermodynamic parameter, PHS = ?Hchem × ?Sσ/kB, is found to have strong correlation with glass forming ability in the configurational entropy (?Sconfig/R) range of 0.9–1.0. PHS has been calculated for compositions in Zr–Cu–Ag, Zr–Cu–Al, Zr–Cu–Ti and Zr–Cu–Ga ternary systems. It is observed that in all the systems studied, the best BMG composition (highest critical diameter (Zc) of glass formation) is the one that corresponds to the highest negative PHS value. Present approach using PHS could be road map to design new BMG forming compositions.  相似文献   
5.
Redox-active ferrocenyl (Fc)-functionalized poly(propylenimine) (PPI) dendrimers solubilized in aqueous media by complexation of the Fc end groups with beta-cyclodextrin (betaCD) were immobilized at monolayers of betaCD on glass ("molecular printboards") via multiple host-guest interactions. The directed immobilization of the third-generation dendrimer-betaCD assembly G3-PPI-(Fc)16-(betaCD)16 at the printboard was achieved by supramolecular microcontact printing. The redox activity of the patterned dendrimers was mapped by scanning electrochemical microscopy (SECM) in the positive feedback mode using [IrCl(6)](3-) as a mediator. Local oxidation of the Fc-dendrimers by the microelectrode-generated [IrCl(6)](2-) resulted in an effective removal of the Fc-dendrimers from the host surface since the oxidation of Fc to the oxidized form (Fc+) leads to a concomitant loss of affinity for betaCD. Thus, SECM provided a way not only to image the surface, but also to control the binding of the Fc-terminated dendrimers at the molecular printboard. Additionally, the electrochemical desorption process could be monitored in time as the dendrimer patterns were gradually erased upon multiple scans.  相似文献   
6.
Copper-catalyzed practical route for the synthesis of benzothiadiazine 1,1-dioxides has been developed. The method involves CH functionalization of arylacetic acids to form aromatic aldehydes and their subsequent condensation with 2-aminobenzenesulfonamide. This functional group tolerant approach furnished benzothiadiazine 1,1-dioxide derivatives in good to excellent yields. Broad substrate scope, inexpensive catalyst and high product yields are notable features of this protocol.  相似文献   
7.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   
8.
An efficient and viable synthesis of α-ketoesters from alkyl halides and α-carbonyl aldehydes has been reported under metal-free conditions. The present method involves oxidative esterification of α-carbonyl aldehydes with alkyl halide using TBAI as a promoter and TBHP as an oxidant to form α-ketoesters in good to excellent yields with versatile structural diversity. Use of commercially accessible and inexpensive substrates, broad substrate scope and good functional group tolerance are the key features of this protocol.  相似文献   
9.
In recent times, heterogenization of homogeneous molecular catalysts onto various porous solid support structures has attracted significant research focus as a method for combining the advantages of both homogeneous as well as heterogeneous catalysis. The design of highly efficient, structurally robust and reusable heterogenized single-site catalysts for the CO2 hydrogenation reaction is a critical challenge that needs to be accomplished to implement a sustainable and practical CO2-looped renewable energy cycle. This study demonstrated a heterogenized catalyst [Ir-HCP-(B/TPM)] containing a molecular Ir-abnormal N-heterocyclic carbene (Ir-aNHC) catalyst self-supported by hierarchical porous hyper-crosslinked polymer (HCP), in catalytic hydrogenation of CO2 to inorganic formate (HCO2) salt that is a prospective candidate for direct formate fuel cells (DFFC). By employing this unique and first approach of utilizing a directly knitted HCP-based organometallic single-site catalyst for CO2-to-HCO2 in aqueous medium, extremely high activity with a single-run turnover number (TON) up to 50816 was achieved which is the highest so far considering all the heterogeneous catalysts for this reaction in water. Additionally, the catalyst featured excellent reusability furnishing a cumulative TON of 285400 in 10 cycles with just 1.6 % loss in activity per cycle. Overall, the new catalyst displayed attributes that are important for developing tangible catalysts for practical applications.  相似文献   
10.
Archiv der Mathematik - We discuss composition operators on certain subspaces of the Hardy space. The family of subspaces that we deal with are called $$H^2_{\alpha , \beta }$$ which have garnered...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号