首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学   25篇
力学   2篇
物理学   2篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  1987年   2篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
2.
[n]Cycloparaphenylenes, which are short fragments of carbon nanotubes, have unique size-dependent optical properties. In this communication, we describe the first synthesis of [7]cycloparaphenylene ([7]CPP), the smallest cycloparaphenylene prepared to date. In order to access this structure, we have developed a synthetic route that capitalizes on successive orthogonal Suzuki-Miyaura coupling reactions. [7]CPP has 83 kcal/mol of strain energy and an orange emission at 592 nm.  相似文献   
3.
The unique optoelectronic properties and smooth, rigid pores of macrocycles with radially oriented π systems render them fascinating candidates for the design of novel mechanically interlocked molecules with new properties. Two high‐yielding strategies are used to prepare nanohoop [2]rotaxanes, which owing to the π‐rich macrocycle are highly emissive. Then, metal coordination, an intrinsic property afforded by the resulting mechanical bond, can lead to molecular shuttling as well as modulate the observed fluorescence in both organic and aqueous conditions. Inspired by these findings, a self‐immolative [2]rotaxane was then designed that self‐destructs in the presence of an analyte, eliciting a strong fluorescent turn‐on response, serving as proof‐of‐concept for a new type of molecular sensing material. More broadly, this work highlights the conceptual advantages of combining compact π‐rich macrocyclic frameworks with mechanical bonds formed via active‐template syntheses.  相似文献   
4.
Isotopic labeling experiments were performed to elucidate a new mechanism for racemization in Prins cyclization reactions. The loss in optical activity for these reactions was shown to occur by 2-oxonia-Cope rearrangements by way of a (Z)-oxocarbenium ion intermediate. Reaction conditions such as solvent, temperature, and the nucleophile employed played a critical role in whether an erosion in enantiomeric excess was observed. Additionally, certain structural features of Prins cyclization precursors were also shown to be important for preserving optical purity in these reactions.  相似文献   
5.
6.
An oxonia-Cope rearrangement was used as an internal clock reaction to probe the mechanism of the Prins cyclization reaction and the subsequent nucleophilic capture of the resultant tetrahydropyranyl cation. The oxonia-Cope rearrangement was shown to occur rapidly under typical Prins cyclization conditions when the oxocarbenium ion resulting from the rearrangement is similar to or lower in energy than the starting oxocarbenium ion. Oxonia-Cope rearrangements can be disfavored by destabilizing the resultant oxocarbenium ion or by stabilizing an intermediate tetrahydropyranyl cation. Stereoselectivity in the nucleophilic capture was dramatically affected by the reactivity of the nucleophile and electrophile. More reactive partners combined rapidly to give axial-substituted Prins products through a least-motion pathway. High selectivity for the equatorial-substituted tetrahydropyran was observed for less reactive nucleophiles and electrophiles.  相似文献   
7.
Carbon nanotubes (CNTs) have emerged as some of the most promising materials for the technologies of the future. One of the most significant limitations to furthering the understanding and application of these fascinating systems is the lack of atomic-level structural control in their syntheses. Current synthetic methods produce mixtures of structures with varying physical properties. In this article, we describe the potential advantages, recent advances, and challenges that lie ahead for the bottom-up organic synthesis of homogeneous carbon nanotubes with well-defined structures.  相似文献   
8.
Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials.

Computational studies reveal near-IR emitting nanohoops and the effect of strain on donor and acceptor units used in conjugated polymers.  相似文献   
9.
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].  相似文献   
10.
Hirst ES  Wang F  Jasti R 《Organic letters》2011,13(23):6220-6223
The [5.7](n)cyclacenes represent a novel class of all sp(2)-hybridized carbon structures. In contrast to the isomeric [n]cyclacenes, [5.7](n)cyclacenes are predicted at the B3LYP/6-31G* level of theory to have stable, closed-shell singlet ground state configurations. Predicted geometries, electronic structures, band gaps, nucleus-independent chemical shift (NICS) values, and strain energies for this new family of cyclic conjugated molecules are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号