首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
物理学   3篇
  2013年   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A correlation between the energies of electronic singlet transitions in benzodiazepines and their biological activity, which was revealed earlier by means of negative ion mass spectrometry with resonance electron capture, has been verified with a UV absorption spectroscopy investigation. Also, it has been noted that the energies of electronic singlet transitions in benzodiazepines are close in value to the ionization energies of atoms Cs, Rb, K, Na, Li and Tl, the cations of which are known to play an important role in nerve cell excitation processes. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
2.
The structure and hydration of insulin-like growth factor 1 and an inactive mutant lacking the C region have been investigated in aqueous solution by molecular dynamics simulation. The overall structures of the two polypeptide resemble those determined by NMR spectroscopy. The deletion of the C region in the wild polypeptide introduces structural stability in the mutant, leading to a better definition of the secondary structure elements. A detailed hydration analysis was performed using the radial distribution functions and energy distributions. The backbone of the mutant is in general more solvent accessible than the wild polypeptide backbone. The structural rearrangements induced in the mutant led to changes in the solvent exposition of Tyr24 and Tyr60, which are residues important for ligand—receptor complex formation. Tyr24 exhibited a similar degree of solvent exposition in both IGF-I and in the mutant; however, its hydroxyl group in the wild polypeptide is better solvated than in the mutant. Tyr60 was found to be solvent exposed in the wild protein, while in the mutant the involvement of its hydroxyl group in intramolecular hydrogen bonds led to it being buried away from the solvent.  相似文献   
3.
Non-primitive LiCl aqueous electrolyte solutions were studied at 1.0, 5.0 and 10.0 M concentrations by molecular dynamics simulations. It was observed that the ion hydration structure is progressively lost with increasing concentration. The ions are aggregated in small clusters at C = 1.0 M. However, at this concentration, two large clusters were detected that are an initial step in an aggregation process. At C = 5.0 M, the highly unstable ion clustering seems to correspond to an intermediary state between low concentration states with poor aggregation and states where the ions are highly aggregated, as observed at C = 10.0 M where almost all the ions are clustered in one cluster. This cluster does not present a crystal-like structure. The high solubility of LiCl in aqueous solutions can consequently be explained as a result of the large radii difference between the anion and the cation that results in the instability of the ionic aggregates, which makes the formation of crystal seeds difficult.  相似文献   
4.
Gas-solid chromatography was used to obtain values of the second gas-solid virial coefficient, B2s, in the temperature range from 343 to 493 K for seven adsorbate gases: methane, ethane, propane, chloromethane, chlorodifluoromethane, dimethyl ether, and sulfur hexafluoride. Carboxen-1000, a 1200 m2/g carbon molecular sieve (Supelco Inc.), was used as the adsorbent. These data were combined with earlier work to make a combined data set of 36 different adsorbate gases variously interacting with from one to four different carbon surfaces. All B2s values were extrapolated to 403 K to create a set of 65 different gas-solid B2s values at a fixed temperature. The B2s value for a given gas-solid system can be converted to a chromatographic retention time at any desired flow rate and can be converted to the amount of gas adsorbed at any pressure in the low-coverage, Henry's law region. Beginning with a theoretical equation for the second gas-solid virial coefficient, various quantitative structure retention relations (QSRR) were developed and used to correlate the B2s values for different gas adsorbates with different carbon surfaces. Two calculated adsorbate molecular parameters (molar refractivity and connectivity index), when combined with two adsorbent parameters (surface area and a surface energy contribution to the gas-solid interaction), provided an effective correlation (r2 = 0.952) of the 65 different B2s values. The two surface parameters provided a simple yet useful representation of the structure and energy of the carbon surfaces and thus our correlations considered variation in both the adsorbate gas and the adsorbent solid.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号