首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2017年   1篇
  2016年   2篇
  2010年   1篇
  2007年   3篇
排序方式: 共有7条查询结果,搜索用时 6 毫秒
1
1.
A 2D coordination compound {[Cu2(HL)(N3)]?ClO4} ( 1 ; H3L=2,6‐bis(hydroxyethyliminoethyl)‐4‐methyl phenol) was synthesized and characterized by single‐crystal X‐ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]?2H2O ( 2 ); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19‐fold Zn2+‐selective chelation‐enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.  相似文献   
2.
Journal of Solid State Electrochemistry - In this work, we report the synthesis and electrode applications of iron-carbon nanohybrid particles prepared by carbonization of a nanocomposite of FeOOH...  相似文献   
3.
Journal of Solid State Electrochemistry - The study emphasizes on the scalable production and comparison of few layered graphene nanosheets (FLGNSs). The FLGNSs have been electrochemically...  相似文献   
4.
In this study, gas chromatography mass spectrometry (GC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed for the metabolic footprinting of a pair of immortalized human uroepithelial cells namely HUC-1 (nontumorigenic) and HUC T-2 (tumorigenic). Both HUC-1 and HUC T-2 cell lines were cultivated in 1 mL of Ham’s F-12 media. Subsequent to 48 h of incubation, 200 μL of cell culture supernatant was protein-precipitated using 1.7 mL of methanol and an aliquot of 1.5 mL of the mixture was separated, dried, trimethylsilyl-derivatized, and analyzed using GC-MS and GC×GC-TOFMS. Metabolic profiles were analyzed using multivariate data analysis techniques to evaluate the changes of the metabolomes. Both GC-MS and GC×GC-TOFMS analyses showed distinct differences in metabolic phenotypes of the normal and tumorigenic human bladder cells (partial least squares-discriminant analysis (PLS-DA) of GC×GC-TOFMS data; two latent variables, R 2 X = 0.418, R 2 Y = 0.977 and Q 2 (cumulative) = 0.852). Twenty metabolites were identified as being statistically different between the two cell types. These metabolites revealed that several key metabolic pathways were perturbed in tumorigenic urothelial cells as compared to the normal cells. Application of GC×GC-TOFMS offered several advantages compared to classical one-dimensional GC-MS which include enhanced chromatographic resolution (without increase in analytical run time), increase in sensitivity, improved identification of metabolites, and also separation of reagent artifacts from the metabolite peaks. Our results reinforced the advantages of GC×GC-TOFMS and the role of metabolomics in characterizing bladder cancer biology using in vitro cell culture models.  相似文献   
5.
A new terephthalate-bridged tetranuclear copper(II) complex has been synthesized and structurally characterized by X-ray crystallography: [Cu4(L)2(tp)(dmf)2] (1) (H3L = 1,3-bis(salicylideneamino)propan-2-ol, tp = terephthalate and dmf = N,N′-dimethylformamide). The dinucleating pentadentate character of the ligand (H3L) and the desired pair-of-dimers arrangement, through the incorporation of the bridging terephthalate moiety, is clearly evident from the structure of 1. The copper atoms are coordinated in a slightly distorted square pyramidal arrangement within each dinucleating half of the complex and are bridged mono-atomically by the secondary alkoxo oxygen of the ligand and di-atomically by the terephthalate moiety. The apical position is occupied by the oxygen atom of the dmf. The structure of 1 reveals a short intramolecular Cu–Cu separation (ca. 3.1 Å), in combination with long intramolecular copper separations (ca. 11 Å). The variable temperature-dependent susceptibility measurement (2–300 K) of 1 reveals a dominant ferromagnetic coupling, 2J = 18.70 cm−1. Complex 1 binds to double-stranded CT (calf-thymus) DNA giving a Kapp value of 1.25 × 107 M−1 and displays efficient cleavage of supercoiled pUC19 DNA in the presence of H2O2 following a hydroxyl radical pathway.  相似文献   
6.
7.
Zinc ion fluorescence sensing and the binding properties of 4-methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol (HL) have been investigated. It displays high selectivity for Zn2+ and can be used as zinc ion-selective luminescent probe for biological application under physiological conditions. The increase in emission in the presence of Zn2+ is accounted for by the formation of hexanuclear complex [Zn6(L)2(OH)2(CH3COO)8] characterized by X-ray crystallography. An approximately 6-fold Zn2+-selective chelation-enhanced fluorescence response in HEPES buffer (pH 7.4) is attributed due to the strong coordination of Zn(II) that would impose rigidity and hence decrease the nonradiative decay of the excited state. By incubation of cultured living cells (B16F10 mouse melanoma and A375 human melanoma) with HL, intracellular Zn2+ concentration could be monitored.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号