首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
化学   125篇
数学   5篇
物理学   14篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2014年   1篇
  2013年   4篇
  2012年   11篇
  2011年   11篇
  2010年   3篇
  2009年   6篇
  2008年   15篇
  2007年   13篇
  2006年   14篇
  2005年   14篇
  2004年   16篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1991年   2篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
1.
2.
The structure and thermal stability of a hexagonal tungsten bronze (HTB) related compound, LaxWO3+y with x≈0.10 and y≈0.15, has been studied by X-ray diffraction, thermal analysis, and electron microscopy. The structure was refined by the Rietveld method from X-ray powder diffractometer data of a La0.10WO3 sample prepared at T=1250°C and P=25 kbar, which consisted of two tungsten bronze related phases in 1:1 proportion. The unit cell dimensions are as follows: La0.108WO3+y (y≈0.16), a=7.40890(5), and c=3.79329(4) Å (HTB-related structure); La0.091WO3, a=3.82458(6) Å (cubic perovskite tungsten bronze (PTB) structure). The lanthanum atoms in La0.108WO3+y are located on the hexagonal axis and statistically distributed on two sites close to the tungsten atom plane. Thermal stability studies of the La0.10WO3 sample in an argon atmosphere under ambient pressure conditions revealed that the HTB-related compound is metastable, decomposing to the stable PTB-type structure and WO3. It was also found from the TG experiments in argon and oxygen that additional oxygen atoms (y) are present in the structure, thus forming a lanthanum tungsten oxide of the above composition. The electron diffraction and microanalysis studies confirmed that crystals of the HTB- and PTB-type structures were formed, with a lanthanum content of x≈0.1.  相似文献   
3.
The structure of the hydrated and the dimethyl sulfoxide solvated rubidium ions in solution has been determined by means of large-angle X-ray scattering (LAXS) and extended X-ray absorption fine structure (EXAFS) studies. The models of the hydrated and dimethyl sulfoxide solvated rubidium ions fitting the experimental data best are square antiprisms with Rb-O bond distances of 2.98(2) and 2.98(3) A, respectively. The EXAFS data show a significant asymmetry in the Rb-O bond distance distribution with C(3) values of 0.0076 and 0.015 A(3), respectively. No second hydration sphere is observed around the hydrated rubidium ion. The dimethyl sulfoxide solvated rubidium ion displays a Rb-O-S bond angle of ca. 130 degrees, which is typical for a medium hard electron acceptor such as rubidium.  相似文献   
4.
This perspective article describes the combination of experimental data and quantum chemical methods for the determination of structure and reaction mechanisms of uranyl(vi) complexes in aqueous solution. The first part assesses the accuracy of the chemical and thermodynamic properties of solvated uranyl(vi) complexes as obtained by various quantum chemical methods. The second part discusses structure determination, mechanisms for ligand exchange and the lability of coordinated water molecules for various uranyl(vi) complexes using a combination of NMR and quantum chemical data.  相似文献   
5.
Kriikku P  Grass B  Hokkanen A  Stuns I  Sirén H 《Electrophoresis》2004,25(10-11):1687-1694
Analysis of the beta-blockers oxprenolol, atenolol, timolol, propranolol, metoprolol, and acebutolol in human urine by a combination of isotachophoresis (ITP) and zone electrophoresis (ZE) was investigated. Methods were developed with a conventional capillary electrophoresis (CE) apparatus and a poly(methyl methacrylate) (PMMA) microchip system. With CE the separation of oxprenolol, atenolol, timolol, and acebutolol from a standard solution containing 5 microg/mL of each compound was accomplished by performing ZE with transient ITP. The electrolyte system consisted of 10 mM sodium morpholinoethane sulfonate (pH 5.5) and 0.1% methylhydroxyethylcellulose as the leading electrolyte and 30 mM ortho-phosphoric acid (pH 2.0) as both the terminating and the ZE background electrolyte. With the microchip system the separation of oxprenolol and acebutolol from a standard solution containing 10 microg/mL of each compound was accomplished by a coupled-channel ITP-ZE device using the same leading electrolyte solution as the CE system but 5 mM glutamic acid (pH 3.4) as terminating and background electrolytes. The systems were used for analyses of patient urine samples. Water-soluble hydrophilic matrix compounds were removed from the urine samples by solid-phase extraction (SPE). Limits of quantification below 5 microg/mL could be achieved. The PMMA ITP-ZE chip has not earlier been used for analyses of any drugs from urine samples.  相似文献   
6.
The coordination chemistry of the solvate complexes of the relatively soft electron-pair acceptor copper(I) has been studied in solution and solid state in seven solvents with strong electron-pair donor properties, liquid ammonia, trimethyl, triethyl, triisopropyl, tri-n-butyl and triphenyl phosphite, and tri-n-butylphosphine. The solvate complexes have been characterised by means of EXAFS and 63Cu NMR spectroscopy, and in some cases also by 65Cu NMR spectroscopy. The copper(I) ion is three-coordinated, most probably in a coplanar trigonal fashion, in liquid ammonia with a mean Cu-N bond distance of 2.00(1) Angstroms. No 63Cu NMR signal has been detected from the ammonia solvated copper(I) ion in liquid ammonia, which supports a three-coordination. The phosphite and phosphine solvated copper(I) ions are tetrahedral with Cu-P bond distances in the range 2.24-2.28 Angstrom in both solution and solid state as determined by EXAFS spectroscopy. The tetrahedral configuration of these complexes has been confirmed by 63Cu and 65Cu NMR spectroscopy through the J(63Cu-31P) and J(65Cu-31P) couplings. The fact that two of the investigated complexes, [Cu(P(OC6H5)3)4]+ and [Cu(P(C4H9)3)4]+, are 63Cu and 65Cu NMR silent is probably caused by a significantly angular distorted tetrahedral configuration.  相似文献   
7.
Herein, aiming at optimization of the polymerization process leading to a family of hole- and electron-conducting 1,1,2,2-ethenetetrathiolate-based polymers, such as poly(nickel-1,1,2,2-ethenetetrathiolate), poly[Kx(Ni-ett)], we investigated transformations of the monomer precursor 1,3,4,6-tetrathiapentalene-2,5-dione (TPD) occurring under polymerization conditions. We found that only one ring of TPD opens upon its reaction with potassium methoxide under inert conditions at room temperature which leads to the formation of potassium 2-oxo-1,3-dithiol-4,5-dithiolate (K2[3]). Heating of K2[3] under reflux in methanol solution under inert conditions opens the second ring, however the resulting product is not potassium ethenetetrathiolate (K4[2]), the product of an exhaustive methanolysis of TPD, but potassium tetrathiooxalate (K2[4]), the product of the decarbonylation of K2[3]. Preliminary experiments reveal that the involvement of K2[4] in the polymerization process is beneficial for reproducible formation of high quality 1,1,2,2-ethenetetrathiolate-based polymers suitable for thermoelectric applications.  相似文献   
8.
9.
Identification of compounds from chemical libraries that bind to macromolecules by use of NMR spectroscopy has gained increasing importance during recent years. A simple methodology based on (19)F NMR spectroscopy for the screening of ligands that bind to proteins, which also provides qualitative information about relative binding strengths and the presence of multiple binding sites, is presented here. A library of fluorinated compounds was assembled and investigated for binding to the two bacterial chaperones PapD and FimC, and also to human serum albumin (HSA). It was found that library members which are bound to a target protein could be identified directly from line broadening and/or induced chemical shifts in a single, one-dimensional (19)F NMR spectrum. The results obtained for binding to PapD using (19)F NMR spectroscopy agreed well with independent studies based on surface plasmon resonance, providing support for the versatility and accuracy of the technique. When the library was titrated to a solution of PapD chemical shift and linewidth changes were observed with increasing ligand concentration, which indicated the presence of several binding sites on PapD and enabled the assessment of relative binding strengths for the different ligands. Screening by (19)F NMR spectroscopy should thus be a valuable addition to existing NMR techniques for evaluation of chemical libraries in bioorganic and medicinal chemistry.  相似文献   
10.
We have analyzed the adsorption of protein to the surfaces of silica nanoparticles with diameters of 6, 9, and 15 nm. The effects upon adsorption on variants of human carbonic anhydrase with differing conformational stabilities have been monitored using methods that give complementary information, i.e., circular dichroism (CD), nuclear magnetic resonance (NMR), analytical ultracentrifugation (AUC), and gel permeation chromatography. Human carbonic anhydrase I (HCAI), which is the most stable of the protein variants, establishes a dynamic equilibrium between bound and unbound protein following mixture with silica particles. Gel permeation and AUC experiments indicate that the residence time of HCAI is on the order of approximately 10 min and slowly increases with time, which allows us to study the effects of the interaction with the solid surface on the protein structure in more detail than would be possible for a process with faster kinetics. The effects on the protein conformation from the interaction have been characterized using CD and NMR measurements. This study shows that differences in particle curvature strongly influence the amount of the protein's secondary structure that is perturbed. Particles with a longer diameter allow formation of larger particle-protein interaction surfaces and cause larger perturbations of the protein's secondary structure upon interaction. In contrast, the effects on the tertiary structure seem to be independent of the particles' curvature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号