首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6401篇
  免费   128篇
  国内免费   12篇
化学   4267篇
晶体学   12篇
力学   87篇
数学   853篇
物理学   1322篇
  2020年   51篇
  2019年   46篇
  2016年   92篇
  2015年   89篇
  2014年   89篇
  2013年   240篇
  2012年   200篇
  2011年   229篇
  2010年   152篇
  2009年   150篇
  2008年   229篇
  2007年   216篇
  2006年   249篇
  2005年   229篇
  2004年   246篇
  2003年   168篇
  2002年   170篇
  2001年   119篇
  2000年   107篇
  1999年   91篇
  1998年   80篇
  1997年   97篇
  1996年   106篇
  1995年   96篇
  1994年   108篇
  1993年   111篇
  1992年   119篇
  1991年   75篇
  1990年   78篇
  1989年   71篇
  1988年   78篇
  1987年   80篇
  1986年   94篇
  1985年   102篇
  1984年   119篇
  1983年   81篇
  1982年   79篇
  1981年   102篇
  1980年   107篇
  1979年   83篇
  1978年   116篇
  1977年   97篇
  1976年   104篇
  1975年   81篇
  1974年   73篇
  1973年   94篇
  1972年   50篇
  1971年   50篇
  1970年   56篇
  1955年   39篇
排序方式: 共有6541条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
We discuss an error estimation procedure for the global error of collocation schemes applied to solve singular boundary value problems with a singularity of the first kind. This a posteriori estimate of the global error was proposed by Stetter in 1978 and is based on the idea of Defect Correction, originally due to Zadunaisky. Here, we present a new, carefully designed modification of this error estimate which not only results in less computational work but also appears to perform satisfactorily for singular problems. We give a full analytical justification for the asymptotical correctness of the error estimate when it is applied to a general nonlinear regular problem. For the singular case, we are presently only able to provide computational evidence for the full convergence order, the related analysis is still work in progress. This global estimate is the basis for a grid selection routine in which the grid is modified with the aim to equidistribute the global error. This procedure yields meshes suitable for an efficient numerical solution. Most importantly, we observe that the grid is refined in a way reflecting only the behavior of the solution and remains unaffected by the unsmooth direction field close to the singular point.  相似文献   
5.
6.
This paper investigates the combinatorial and computational aspects of certain extremal geometric problems in two and three dimensions. Specifically, we examine the problem of intersecting a convex subdivision with a line in order to maximize the number of intersections. A similar problem is to maximize the number of intersected facets in a cross-section of a three-dimensional convex polytope. Related problems concern maximum chains in certain families of posets defined over the regions of a convex subdivision. In most cases we are able to prove sharp bounds on the asymptotic behavior of the corresponding extremal functions. We also describe polynomial algorithms for all the problems discussed.Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this research in part under Grant No. MCS83-03925. Herbert Edelsbrunner is pleased to acknowledge the support of Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862.  相似文献   
7.
We consider a spinning charge coupled to the Maxwell field. Through the appropriate symmetry in the initial conditions the charge remains at rest. We establish that any time-dependent finite energy solution converges to a sum of a soliton wave and an outgoing free wave. The convergence holds in global energy norm. Under a small constant external magnetic field the soliton manifold is stable in local energy seminorms and the evolution of the angular velocity is guided by an effective finite-dimensional dynamics. The proof uses a non-autonomous integral inequality method.  相似文献   
8.
9.
10.
Given a1,a2,...,an ∈ ℤ^d$, we examine the set, G, of all non-negative integer combinations of these ai. In particular, we examine the generating function f(z) = ∑b ∈ Gzb. We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in ℤn. In the generic case, this follows from algebraic results of Bayer and Sturmfels. Here we prove it geometrically in all cases, and we examine a generalization involving the neighborhood complex on an arbitrary lattice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号