首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   14篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  1991年   1篇
  1987年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
The enzyme Na+, K+-ATPase is an integral membrane protein which transports sodium and potassium cations against an electrochemical gradient. The transport of Na+ and K+ ions is connected to an oscillation of the enzyme between the two conformational states, the E1 (Na+) and the E2 (K+) conformations. The enzymatic activity of ATPase is largley affected by different ligands complexation. This review reports the effects of several drugs such as AZT (anti-AIDS), cis-Pt (antitumor), aspirin (anti-inflammatory) and vitamin C (antioxidant) on the stability and secondary structure of Na,K-ATPase in vitro. Drug-enzyme binding is mainly through H-bonding to the polypeptide C=O and C-N groups with two binding constants K1(AZT) = 5.30 × 105 M?1 and K2(AZT) = 9.80 × 103 M?1 for AZT and one binding constant for Kcis-Pt = 1.93 × 104 M?1, Kaspirin = 6.45 × 103 M?1 and Kascorbate = 1.04 × 104 M?1 for cis-Pt, aspirin and ascorbic acid. The enzyme secondary structure was altered from that of α-helix 19.8% (free protein) to almost 22–26% and the β-sheet from 25.6% to 18–22%, upon drug complexation with the order of induced stability AZT > cis-Pt > ascorbate > aspirin.  相似文献   
2.
Biogenic polyamines are essential for cell growth and differentiation. The interaction of polyamines with protein of photosystem II (PSII) are well investigated, while there has been no report on the effect of monoamines complexation on photosynthetic oxygen evolution. This study was designed to investigate the interaction of methylamine with proteins of PSII, using PSII-enriched submembrane fractions with various concentrations of methylamine. Fourier transformed infrared (FTIR) and fluorescence spectroscopic methods were used in order to determine the methylamine binding mode, the protein conformational changes, and the effect of amine interaction on photosynthetic oxygen evolution. Spectroscopic evidence showed that methylamine interacts with protein (H-bonding) through polypeptide CO, C–N and NH groups with major perturbations of protein secondary structure. Major reduction of α-helix from 50% (free PSII) to 35% with an increase of β-sheet from 10% (free PSII) to 16% was observed in methylamine-PSII complexes. At very low methylamine concentration, no inhibition of oxygen-evolution occurred, while at higher amine content (12 mM), 100% inhibition was observed. Chlorophyll (Chl) fluorescence measurements indicated the inhibition mainly affects the oxygen evolving complex (OEC) of PSII. Comparisons of the effects of methylamine with biogenic polyamine spermine, spermidine and putrescine showed a similar mode of binding with protein (H-bonding) through polypeptide CO, C–N and NH groups. However, major alterations of the protein secondary structure are induced by monoamine and not by polyamines.  相似文献   
3.
Zanamivir (ZAN) is the first of a new generation of influenza virus-specific drugs known as neuraminidase inhibitors, which acts by interfering with life cycles of influenza viruses A and B. It prevents the virus spreading infection to other cells by blocking the neuraminidase enzyme present on the surface of the virus. The aim of this study was to examine the stability and structural features of calf thymus DNA and yeast RNA complexes with zanamivir in aqueous solution, using constant DNA or RNA concentration (12.5 mM) and various zanamivir/polynucleotide (P) ratios of 1/20, 1/10, 1/4, and 1/2. FTIR and UV–visible spectroscopy are used to determine the drug external binding modes, the binding constant and the stability of zanamivir–DNA and RNA complexes in aqueous solution. Structural analysis showed major interaction of zanamivir with G-C (major groove) and A-T (minor groove) base pairs and minor perturbations of the backbone PO2 group with overall binding constants of Kzanamivir–DNA = 1.30 × 104 M−1 and Kzanamivir–RNA = 1.38 × 104 M−1. The drug interaction induces a partial B to A-DNA transition, while RNA remains in A-conformation.  相似文献   
4.
In this review the fundamental question of how does protein-DNA or protein-RNA interactions affect the structures and dynamics of DNA, RNA, and protein is addressed. Two models of human serum albumin (HSA) bindings to calf-thymus DNA and transfer RNA (tRNA) are presented here. In these models the binding sites, stability and structural aspects of DNA-protein and RNA-protein are discussed. Electrostatic binding of DNA or RNA via backbone phosphate group to the positively charged amino acids on the surface of protein is prevailing. Two binding sites with K1 = 4.8 × 105 M?1 and K2 = 6.1 × 104 M?1 for protein-DNA and one binding affinity with K = 1.45 × 104 M?1 for protein-RNA are observed. A partial B to A-DNA transition is observed for protein-DNA complexes, while tRNA remains in A-family structure upon protein interaction.  相似文献   
5.
The Schiff base NN′-ethylenebis(salicylideneimine), H2 salen reacts with hydrous and anhydrous Zinc, Cadmium and Mercury(II) salts to give complexes M(H2 salen)X2·nH2O (M = Zn, Cd, Hg; XCl, Br, I, NO3; MZn, X2SO4; n = 0?2). Spectroscopic and other evidence indicated that; (i) halide and sulphate are coordinated to the metal ion, whereas the nitrate group is ionic in mercury nitrate compound and covalently bonded in zinc and cadmium nitrato complexes, (ii) the Schiff base is coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms, which carry the protons transferred from phenolic groups on coordination, (iii) therefore the coordination numbers suggested are 4-, in mercury and 4- or 6- in zinc and cadmium Schiff base complexes.  相似文献   
6.
This review reports the effects of several drugs such as AZT (anti-AIDS), cis-Pt (antitumor), aspirin (anti-inflammatory) and vitamin C (antioxidant) on the stability and conformation of Na,K-ATPase in vitro. Drug-enzyme binding was found to be via H-bonding to the polypeptide CO and C-N groups with two binding constants K(1(AZT))=5.30 (+/-2.1)x10(5)M(-1) and K(2(AZT))=9.80 (+/-2.9)x10(3)M(-1) for AZT and one binding constant K(cis)(-Pt)=1.93 (+/-1.2)x10(4)M(-1) for cis-Pt, K(aspirin)=6.45 (+/-2.5)x10(3)M(-1) and K(ascorbate)=1.04 (+/-0.5)x10(4)M(-1) for aspirin and ascorbic acid. The enzyme secondary structure was altered with major increase of alpha-helix from 19.9% (free protein) to 22-26% and reduction of beta-sheet from 25.6% (free protein) to 17-23% upon drug complexation indicating a partial stabilization of protein conformation. The order of induced stability is AZT>cis-Pt>ascorbate>aspirin.  相似文献   
7.
Flavonoids are an interesting group of natural polyphenolic compounds that exhibit extensive bioactivities such as scavenging free radical, antitumor and antiproliferative effects. The anticancer and antiviral effects of these natural products are attributed to their potential biomedical applications. While flavonoids complexation with DNA is known, their bindings to RNA are not fully investigated. This study was designed to examine the interactions of three flavonoids; morin (Mor), apigenin (Api) and naringin (Nar) with yeast RNA in aqueous solution at physiological conditions, using constant RNA concentration (6.25 mM) and various pigment/RNA (phosphate) ratios of 1/120 to 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constant and the stability of RNA in flavonoid-RNA complexes in aqueous solution. Spectroscopic evidence showed major binding of flavonoids to RNA with overall binding constants of K(morin) = 9.150 x 10(3) M(-1), K(apigenin)=4.967 x 10(4) M(-1), and K(naringin)=1.144 x 10(4) M(-1). The affinity of flavonoid-RNA binding is in the order of apigenin>naringin>morin. No biopolymer secondary structural changes were observed upon flavonoid interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   
8.
Sn(CH3)2Cl2 exerts its antitumor activity in a specific way. Unlike anticancer cis-Pt(NH3)2Cl2 drug which binds strongly to the nitrogen atoms of DNA bases, Sn(CH3)2Cl2 shows no major affinity towards base binding. Thus, the mechanism of action by which tinorganometallic compounds exert antitumor activity would be different from that of the cisplatin drug. The aim of this study was to examine the binding of Sn(CH3)2Cl2 with calf thymus DNA and yeast RNA in aqueous solutions at pH 7.1–6.6 with constant concentrations of DNA and RNA and various molar ratios of Sn(CH3)2Cl2/DNA (phosphate) and Sn(CH3)2Cl2/RNA of 1/40, 1/20, 1/10, 1/5. Fourier transform infrared (FTIR) and UV–visible difference spectroscopic methods were used to determine the Sn(CH3)2Cl2 binding mode, binding constant, sequence selectivity and structural variations of Sn(CH3)2Cl2/DNA and Sn(CH3)2Cl2/RNA complexes in aqueous solution. Sn(CH3)2Cl2 hydrolyzes in water to give Sn(CH3)2(OH)2 and [Sn(CH3)2(OH)(H2O)n]+ species. Spectroscopic evidence showed that interaction occurred mainly through (CH3)2Sn(IV) hydroxide and polynucleotide backbone phosphate group with overall binding constant of K(Sn(CH3)2Cl2–DNA)=1.47×105 M−1 and K(Sn(CH3)2Cl2–RNA)=7.33×105 M−1. Sn(CH3)2Cl2 induced no biopolymer conformational changes with DNA remaining in the B-family structure and RNA in A-conformation upon drug complexation.  相似文献   
9.
10.
The reaction betweenL-arabinose and hydrated uranyl salts has been investigated in aqueous solution and the solid complexes of the type UO2(L-arabinose)X 2 · 2 H2O, whereX=Cl, Br, and NO 3 , have been isolated and characterized. Due to the marked similarities with those of the structurally known Ca(L-arabinose)X 2 · 4 H2O and Mg(L-arabinose)X 2 · 4 H2O (X=Cl or Br) compounds, the UO 2 2+ ion binds obviously to twoL-arabinose moieties, through O1, O5 of the first and O3, O4 of the second molecule resulting into a six-coordinated geometry around the uranium ion with no direct U-X (X=Cl, Br or NO 3 ) interaction. The intermolecular hydrogen bonding network of the freeL-arabinose is rearranged upon uranium interaction. The -anomer configuration is predominant in the freeL-arabinose, whereas the -anomer conformation is preferred in the uranium complexes.
Darstellung, spektroskopische und Strukturanalyse von Uran-Arabinose Komplexen
Zusammenfassung Es wurde die Reaktion zwischenL-Arabinose und hydratisierten Uranylsalzen in wäßriger Lösung untersucht und kristalline Komplexe des Typs UO2(L-Arabinose)X 2 · 2 H2O mitX=Cl, Br und NO 3 isoliert und charakterisiert. Wie aus markanten Ähnlichkeiten der Komplexe mit den bekannten Verbindungen Ca(L-Arabinose)X 2 · 4 H2O und Mg(L-Arabinose)X 2 · 4 H2O (X=Cl oder Br) abzuleiten ist, bindet das UO 2 2+ -Ion mit zweiL-Arabinose Einheiten, wobei sich durch die O1,O5-Koordination des ersten und die O3,O4-Koordination des zweiten Moleküls eine sechs-koordinierte Geometrie um das Uranylion [ohne direkte U-X (X=Cl, Br oder NO 3 ) Wechselwirkung] ausbildet. Die intermolekularen Wasserstoffbrücken zeigen nach der Wechselwirkung mit dem Uranylion eine Umgruppierung. In der freienL-Arabinose ist das -Anomere vorherrschend, in den Urankomplexen hingegen das -Anomere.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号