首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
化学   5篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 187 毫秒
1
1.
Small‐molecule‐based fluorescent probes have become important tools in biology for sensing and imaging applications. However, the biological applications of many of the fluorescent molecules are hampered by low cellular uptake and high toxicity. In this paper, we show for the first time that the introduction of halogen atoms enhances the cellular uptake of fluorescent molecules and the nature of halogen atoms plays a crucial role in the plasma membrane transport in mammalian cells. The remarkably higher uptake of iodinated compounds compared to that of their chloro or bromo analogues suggests that the strong halogen bonding ability of iodine atoms may play an important role in the membrane transport. This study provides a novel strategy for the transport of fluorescent molecules across the plasma membrane in living cells.  相似文献   
2.
The poor uptake of fluorescent probes and therapeutics by mammalian cells is a major concern in biological applications ranging from fluorescence imaging to drug delivery in living cells. Although gaseous molecules such as oxygen and carbon dioxide, hydrophobic substances such as benzene, and small polar but uncharged molecules such as water and ethanol can cross the cell plasma membrane by simple passive diffusion, many synthetic as well as biological molecules require specific membrane transporters and channel proteins that control the traffic of these molecules into and out of the cell. This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions. The nature of the fluorophore does not play a major role in the cellular uptake when iodine atoms are present in the molecules, as compounds bearing naphthalimide, coumarin, BODIPY, and pyrene moieties show similar uptakes. Interestingly, the introduction of a maleimide-based fluorophore bearing two hydroxyethylthio moieties allows the molecules to cross the plasma and nuclear membranes, and the presence of iodine atoms further enhances the transport across both membranes. Overall, this study provides a general strategy for enhancing the uptake of organic molecules by mammalian cells.  相似文献   
3.
Ag support on silica has been used as an effective heterogeneous catalyst for the facile synthesis of chloro‐8‐substituted‐9H‐purine derivatives via the one‐pot reaction of 6‐chloro‐pyrimidines and substituted acids. The title compounds were formed as excellent yields with short reaction time under eco‐friendly conditions. The prepared catalyst (Ag/SiO2) can be reused for a number of times with insignificant loss in its activity. This route has the advantage of being a cost‐effective, readily available, easy workup procedure.  相似文献   
4.
Glutathione peroxidase (GPx) is a selenoenzyme that protects cells against oxidative damage. Although the formation of a seleninic acid (‐SeO2H) by this enzyme during oxidative stress has been proposed, a selenic acid has not been identified in cells. Herein, we report that the formation of a seleninic acid can be monitored in living cells by using a redox‐active ebselen analogue with a naphthalimide fluorophore. The probe reacts with H2O2 to generate the highly fluorescent seleninic acid. The electron withdrawing nature of the ‐SeO2H moiety and strong Se???O interactions, which prevent the photoinduced electron transfer, are responsible for the fluorescence.  相似文献   
5.
The plasma membrane regulates the transport of molecules into the cell. Small hydrophobic molecules can diffuse directly across the lipid bilayer. However, larger molecules require specific transporters for their entry into the cell. Regulating the cellular entry of small molecules and proteins is a challenging task. The introduction of halogen, particularly iodine, to small molecules and proteins is emerging to be a promising strategy to improve the cellular uptake. Recent studies reveal that a simple substitution of hydrogen atom with iodine not only increases the cellular uptake, but also regulates the membrane transport. The strong halogen-bond-forming ability of iodine atoms plays a crucial role in the transport and the introduction of iodine may provide an efficient strategy for studying membrane activity and cellular functions and improving the delivery of therapeutic agents. This Concept article does not provide a comprehensive picture of membrane transport but highlights halogen-substitution as a novel strategy for understanding and regulating the cell-membrane traffic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号