首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   16篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2002年   2篇
  1998年   3篇
  1997年   3篇
排序方式: 共有16条查询结果,搜索用时 28 毫秒
1.
Some important process properties of α-l,4-D-ghican phosphorylases isolated from the bacteriumCorynebacterium callunae and potato tubers (Solatium tuberosum) were compared. Apart from minor differences in their stability and specificity (represented by the maximum degree of maltodextrin conversion) and a 10-fold higher affinity of the plant phosphorylase for maltodextrin (K M of 1.3 g/L at 300 mM of orthophosphate), the performances of both enzymes in a continuous ultrafiltration membrane reactor were almost identical. Product synthesis was carried out over a time course of 300–400 h in the presence or absence of auxiliary pullulanase (increasing the accessibility of the glucan substrate for phosphorolytic attack up to 15–20%). The effect of varied dilution rate and reaction temperature on the resulting productivities was quantitated, and a maximum operational temperature of 40°C was identified.  相似文献   
2.
The wood-degrading fungus Trametes multicolor secretes several laccase isoforms when grown on a simple medium containing copper in the millimolar range for stimulating laccase synthesis. The main isoenzyme laccase II was purified to apparent homogeneity from the culture supernatant by using anion-exchange chromatography and gel filtration. Laccase II is a monomeric glycoprotein with a molecular mass of 63 kDa as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis, contains 18% glycosylation, and has a pI of 3.0. It oxidizes a variety of phenolic substrates as well as ferrocyanide and iodide. The pH optimum depends on the substrate employed and shows a bell-shaped pH activity profile with an optimum of 4.0 to 5.0 for the phenolic substrates, while the nonphenolic substrates ferrocyanide and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate) show a monotonic pH profile with a rate decreasing with increasing pH.  相似文献   
3.

A number of wild-type isolates ofSclerotium rolfsii were screened for their capacity to produce lignocellulolytic enzymes when grown on a cellulose-based medium.S. rolfsii proved to be an efficient producer of hemicellulolytic enzymes under the conditions selected for this screening, although there was a great variability in enzyme activities formed by the different isolates. In addition to xylanase and mannanase, which were produced in remarkably high levels, a number of accessory enzymes, which are important for the complete degradation of substituted hemicelluloses and include a-arabinosidase, acetyl esterase, and a-galactosidase, are formed byS. rolfsii. Efficient production of xylanase and mannanase was achieved when cellulose-based media were used for growth. Under these conditions, enhanced levels of endoglucanase were formed as well. Formation of xylanase and mannanase could be more specifically induced when using xylan or mannan as growth substrates, although the enzyme activities thus obtained were significantly lower compared to cultivations on cellulose as main inducing substrate.

  相似文献   
4.
We report the fabrication and characterisation of a non-compartmentalised, mediator and cofactor free glucose-oxygen biofuel cell based on adsorbed enzymes exhibiting direct bioelectrocatalysis, viz. cellobiose dehydrogenase from Dichomera saubinetii and laccase from Trametes hirsuta as the anodic and cathodic bioelements, respectively, with the following characteristics: an open-circuit voltage of 0.73 V; a maximum power density of 5 microW cm(-2) at 0.5 V of the cell voltage and an estimated half-life of > 38 h in air-saturated 0.1 M citrate-phosphate buffer, pH 4.5 containing 5 mM glucose.  相似文献   
5.
A series of xylodextrins has been produced by enzymatic or hydrothermal degradation of industrial xylans. For further synthetic use, the oligomers were converted into per-O-acetylated xylooligomers which were separated by silica gel chromatography to furnish preparative amounts of xylobiose up to xylopentaose. In a model reaction, selective anomeric deacetylation and treatment with trichloroacetonitrile furnished a xylobiosyl donor, which was converted into the β-methyl glycoside. In addition, methyl β-D -xylopyranoside was transformed into a suitable glycosyl acceptor via tosylation followed by a double displacement reaction at O-4, allowing for further chain elongation and modification at the reducing xylopyranosyl unit.  相似文献   
6.
This paper presents some functional differences as well as similarities observed when comparing the newly discovered cellobiose dehydrogenase (CDH) from Trametes villosa (T.v.) with the well-characterized one from Phanerochaete chrysosporium (P.c.). The enzymes were physically adsorbed on spectrographic graphite electrodes placed in an amperometric flow through cell connected to a flow system. In the case of T.v.-CDH-modified graphite electrodes, a high direct electron transfer (DET) current was registered at the polarized electrode in the presence of the enzyme substrate reflecting a very efficient internal electron transfer (IET) process between the reduced FAD-cofactor and the oxidized heme-cofactor. In the case of P.c.-CDH-modified graphite electrodes, the DET process is not as efficient, and the current will greatly increase in the presence of a mediator (mediated electron transfer, MET). As a consequence, when comparing the two types of enzyme-modified electrodes an inverted DET/MET ratio for T.v.-CDH is shown, in comparison with P.c.-CDH. The rates of the catalytic reaction were estimated to be comparable for both enzymes, by measuring the combined DET + MET currents. The inverted DET/MET ratio for T.v.-CDH-modified electrodes might suggest that probably there is a better docking between the two domains of this enzyme and that the linker region of P.c.-CDH might have an active role in modulating the rate of the IET (by changing the interdomain distance), with respect to pH. Based on the new properties of T.v.-CDH emphasized in the present study, an analytical application of a third-generation biosensor for lactose was recently published.  相似文献   
7.
During a screening for the enzyme pyranose 2-oxidase (P2O) which has a great potential as a biocatalyst for carbohydrate transformations, Trametes multicolor was identified as a promising, not-yet-described producer of this particular enzyme activity. Furthermore, it was found in this screening that the enzyme frequently occurs in basidiomycetes. Intracellular P2O was produced in a growth-associated manner by T. multicolor during growth on various substrates, including mono-, oligo-, and polysaccharides. Highest levels of this enzyme activity were formed when lactose or whey were used as substrates. Peptones from casein and other casein hydrolysates were found to be the most favorable nitrogen sources for the formation of P2O. By applying an appropriate feeding strategy for the substrate lactose, which ensured an elevated concentration of the carbon source during the entire cultivation, levels of P2O activity obtained in laboratory fermentations, as well as the productivity of these bioprocess experiments, could be enhanced more than 2.5-fold.  相似文献   
8.
9.
The flavin-dependent sugar oxidoreductase pyranose dehydrogenase (PDH) from the plant litter-degrading fungus Agaricus meleagris oxidizes d-glucose (GLC) efficiently at positions C2 and C3. The closely related pyranose 2-oxidase (P2O) from Trametes multicolor oxidizes GLC only at position C2. Consequently, the electron output per molecule GLC is twofold for PDH compared to P2O making it a promising catalyst for bioelectrochemistry or for introducing novel carbonyl functionalities into sugars. The aim of this study was to rationalize the mechanism of GLC dioxidation employing molecular dynamics simulations of GLC–PDH interactions. Shape complementarity through nonpolar van der Waals interactions was identified as the main driving force for GLC binding. Together with a very diverse hydrogen-bonding pattern, this has the potential to explain the experimentally observed promiscuity of PDH towards different sugars. Based on geometrical analysis, we propose a similar reaction mechanism as in P2O involving a general base proton abstraction, stabilization of the transition state, an alkoxide intermediate, through interaction with a protonated catalytic histidine followed by a hydride transfer to the flavin N5 atom. Our data suggest that the presence of the two potential catalytic bases His-512 and His-556 increases the versatility of the enzyme, by employing the most suitably oriented base depending on the substrate and its orientation in the active site. Our findings corroborate and rationalize the experimentally observed dioxidation of GLC by PDH and its promiscuity towards different sugars.  相似文献   
10.
Applied Biochemistry and Biotechnology - The production of sorbitol and gluconic acid by isolated glucose-fructose oxidoreductase (GFOR) fromZymomonas mobilis has been studied in a convective,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号