首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   2篇
物理学   5篇
  2000年   3篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2.
Of all the elements, hydrogen has the largest naturally occurring variations in the ratio of its stable isotopes (D/H). It is for this reason that there has been a strong desire to add hydrogen to the list of elements amenable to isotope ratio monitoring gas chromatography/mass spectrometry (irm-GC/MS). In irm-GC/MS the sample is entrained in helium as the carrier gas, which is also ionized and separated in the isotope ratio mass spectrometer (IRMS). Because of the low abundance of deuterium in nature, precise and accurate on-line monitoring of D/H ratios with an IRMS requires that low energy helium ions be kept out of the m/z 3 collector, which requires the use of an energy filter. A clean mass 3 (HD(+.)) signal which is independent of a large helium load in the electron impact ion source is essential in order to reach the sensitivity required for D/H analysis of capillary GC peaks. A new IRMS system, the DELTA(plus)XL(trade mark), has been designed for high precision, high accuracy measurements of transient signals of hydrogen gas. It incorporates a retardation lens integrated into the m/z 3 Faraday cup collector. Following GC separation, the hydrogen bound in organic compounds must be quantitatively converted into H(2) gas prior to analysis in the IRMS. Quantitative conversion is achieved by high temperature conversion (TC) at temperatures >1400 degrees C. Measurements of D/H ratios of individual organic compounds in complicated natural mixtures can now be made to a precision of 2 per thousand (delta notation) or, better, with typical sample amounts of approximately 200 ng per compound. Initial applications have focused on compounds of interest to petroleum research (biomarkers and natural gas components), food and flavor control (vanillin and ethanol), and metabolic studies (fatty acids and steroids). Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
3.
A rapid and very simple method for extracting polycyclic aromatic hydrocarbons (PAHs) from soils, sediments, and air particulate matter has been developed by coupling static subcritical water extraction with styrene-divinylbenzene (SDB-XC) extraction discs. Soil, water, and the SDB-XC disc are placed in a sealed extraction cell, heated to 250 degrees C for 15 to 60 min, cooled, and the PAHs recovered from the disc with acetone/methylene chloride. If the cells are mixed during heating, all PAHs with molecular weights from 128 to 276 are quantitatively (>90%) extracted and collected on the sorbent disc and are then recovered by shaking with acetone/methylene chloride. After water extraction, the sorbent discs can be stored in autosampler vials without loss of the PAHs, thus providing a convenient method of shipping PAH extracts from field sites to the analytical laboratory. The method gives good quantitative agreement with standard Soxhlet extraction, and with certified reference materials for PAH concentrations on soil, sediment (SRM 1944), and air particulate matter (SRM 1649a).  相似文献   
4.
5.
Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100 degrees C), supercritical fluid extraction (SFE) (1 h at 150 degrees C with pure CO2), and subcritical water (1 h at 250 degrees C, or 30 min at 300 degrees C). Although minor differences in recoveries for some PAHs resulted from the different methods, quantitative agreement between all of the methods was generally good. However, the extract quality differed greatly. The organic solvent extracts (Soxhlet and PLE) were much darker, while the extracts from subcritical water (collected in toluene) were orange, and the extracts from SFE (collected in CH2Cl2) were light yellow. The organic solvent extracts also yielded more artifact peaks in the gas chromatography (GC)-mass spectrometry and GC-flame ionization detection chromatograms, especially compared to supercritical CO2. Based on elemental analysis (carbon and nitrogen) of the soil residues after each extraction, subcritical water, PLE, and Soxhlet extraction had poor selectivity for PAHs versus bulk soil organic matter (approximately 1/4 to 1/3 of the bulk soil organic matter was extracted along with the PAHs), while SFE with pure CO2 removed only 8% of the bulk organic matrix. Selectivities for different compound classes also vary with extraction method. Extraction of urban air particulate matter with organic solvents yields very high concentrations of n- and branched alkanes (approximately C18 to C30) from diesel exhaust as well as lower levels of PAHs, and no selectivity between the bulk alkanes and PAHs is obtained during organic solvent extraction. Some moderate selectivity with supercritical CO2 can be achieved by first extracting the bulk alkanes at mild conditions, followed by stronger conditions to extract the remaining PAHs, i.e., the least polar organics are the easiest organics to extract with pure CO2. In direct contrast, subcritical water prefers the more polar analytes, i.e., PAHs were efficiently extracted from urban air particulates at 250 degrees C, with little or no extraction of the alkanes. Finally, recent work has demonstrated that many pollutant molecules become "sequestered" as they age for decades in the environment (i.e., more tightly bound to soil particles and less available to organisms or transport). Therefore, it may be more important for an extraction method to only recover pollutant molecules that are environmentally-relevant, rather than the conventional attempts to extract all pollutant molecules regardless of how tightly bound they are to the soil or sediment matrix. Initial work comparing SFE extraction behavior using mild to strong conditions with bioremediation behavior of PAHs shows great promise to develop extraction methodology to measure environmentally-relevant concentrations of pollutants in addition to their total concentrations.  相似文献   
6.
7.
Short summer seasons with low thermal energy input characterise polar ecosystems. Climatic variables and physical isolation of terrestrial habitats act as selective filters which must be passed to allow colonisation, establishment and survival in these extreme environments. Life history studies of the terrestrial biota of such ecosystems give little evidence of adaptive responses to low temperatures having evolved in situ, even though behavioural, ecophysiological and biochemical features allowing tolerance of the likely extremes are well-developed. Observed life history strategies are often consistent with the general predictions of adversity (A) or stress (S) selection. However, biota successful in these extreme environments may be better-grouped by the lack of particular life history features, rather than common possession.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号