首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 515 毫秒
1
1.
Organic phosphors have been widely explored with an understanding that crystalline molecular ordering is a requisite for enhanced intersystem crossing. In this context, we explored the room‐temperature phosphorescence features of a solvent‐free organic liquid phosphor in air. While alkyl chain substitution varied the physical states of the bromonaphthalimides, the phosphorescence remained unaltered for the solvent‐free liquid in air. As the first report, a solvent‐free liquid of a long swallow‐tailed bromonaphthalimide exhibits room‐temperature phosphorescence in air. Doping of the phosphor with carbonyl guests resulted in enhanced phosphorescence, and hence a large‐area paintable phosphorescent liquid composite with improved lifetime and quantum yield was developed.  相似文献   
2.
An innovative transformation of organic luminescent materials in recent years has realised the exciting research area of ultralong room-temperature phosphorescence. Here the credit for the advancements goes to the rational design of new organic phosphors. The continuous effort in the area has yielded wide varieties of metal-free organic systems capable of extending the lifetime to several seconds under ambient conditions with high quantum yield and attractive afterglow properties. The various strategies adopted in the past decade to manipulate the fate of triplet excitons suggest a bright future for this class of materials. To analyze the underlying processes in detail, we have chosen high performing organic triplet emitters that utilized the best possible ways to achieve a lifetime above one second along with impressive quantum yield and afterglow properties. Such a case study describing different classes of metal-free organic phosphors and strategies adopted for the efficient management of triplet excitons will stimulate the development of better candidates for futuristic applications. This Perspective discusses the phosphorescence features of single- and multi-component crystalline assemblies, host–guest assemblies, polymers, and polymer-based systems under various classes of molecules. The various applications of the organic phosphors, along with future perspectives, are also highlighted.

A summary of the extremely efficient organic phosphors that utilized the best possible ways to manipulate the fate of triplet excitons for achieving a long lifetime along with impressive quantum yield and afterglow properties is provided.  相似文献   
3.
Room-temperature phosphorescence of metal and heavy atom-free organic molecules has emerged as an area of great potential in recent years. A rational design played a critical role in controlling the molecular ordering to impart efficient intersystem crossing and stabilize the triplet state to achieve room-temperature ultralong phosphorescence. However, in most cases, the strategies to strengthen phosphorescence efficiency have resulted in a reduced lifetime, and the available nearly degenerate singlet-triplet energy levels impart a natural competition between delayed fluorescence and phosphorescence, with the former one having the advantage. Herein, an organic helical assembly supports the exhibition of an ultralong phosphorescence lifetime. In contrary to other molecules, 3,6-phenylmethanone functionalized 9-hexylcarbazole exhibits a remarkable improvement in phosphorescence lifetime (>4.1 s) and quantum yield (11 %) owing to an efficient molecular packing in the crystal state. A right-handed helical molecular array act as a trap and exhibits triplet exciton migration to support the exceptionally longer phosphorescence lifetime.  相似文献   
4.
Room‐temperature phosphorescence of metal and heavy atom‐free organic molecules has emerged as an area of great potential in recent years. A rational design played a critical role in controlling the molecular ordering to impart efficient intersystem crossing and stabilize the triplet state to achieve room‐temperature ultralong phosphorescence. However, in most cases, the strategies to strengthen phosphorescence efficiency have resulted in a reduced lifetime, and the available nearly degenerate singlet‐triplet energy levels impart a natural competition between delayed fluorescence and phosphorescence, with the former one having the advantage. Herein, an organic helical assembly supports the exhibition of an ultralong phosphorescence lifetime. In contrary to other molecules, 3,6‐phenylmethanone functionalized 9‐hexylcarbazole exhibits a remarkable improvement in phosphorescence lifetime (>4.1 s) and quantum yield (11 %) owing to an efficient molecular packing in the crystal state. A right‐handed helical molecular array act as a trap and exhibits triplet exciton migration to support the exceptionally longer phosphorescence lifetime.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号