首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
化学   66篇
物理学   5篇
  2023年   2篇
  2019年   2篇
  2018年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   11篇
  2010年   6篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   8篇
  2001年   6篇
  1997年   1篇
排序方式: 共有71条查询结果,搜索用时 62 毫秒
1.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   
2.
The influence of preparation temperature on the size and size distribution of dodecylthiol monolayer protected gold clusters was studied. The monolayer protected clusters (MPCs) were synthesized by two different variations of the Brust-Schiffrin procedure. In all of the experiments, the stoichiometry of the reactants dodecylthiol, HAuCl(4), and sodium borohydride was kept constant, while the temperature was varied in the range of -18 to +90 degrees C. Two series were performed in which an aqueous solution of NaBH(4) was either added over 30 s or all in one portion. The size and size distribution of the MPCs were determined by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). It has been demonstrated that in general the MPC size increases with elevated preparation temperatures.  相似文献   
3.
Rigid linear and tripoidal organic modules based on the oligo(phenylene ethynylene) backbone having salicylaldehyde-derived termini are synthesized. A highly functionalized 5-iodosalicyl aldehyde was prepared and coupled to each ethynyl group of 1,4-diethynylbenzene or 1,3,5-triethynylbenzene in Sonogashira couplings. The two or three termini of the compounds are functionalized for incorporation in linear and branched oligonucleotide strands. For the linear module (LM), the two termini are equipped with amide spacers, and one of these was functionalized with a DMTr (dimethoxytrityl)-protected hydroxy group and the other with a phosphoramidite. One of the tripoidal modules is prepared with DMTr groups in two of its three termini. A tripoidal module is also synthesized with three different groups on its hydroxy termini: a phosphoramidite, a DMTr group, and an Fmoc group. Extended studies have shown that these rigid linear and tripoidal organic modules can be incorporated into short oligonucleotides. Several of these modules can be applied for DNA-directed assembly and covalent coupling into structures of predetermined connectivity. Such structures have potential application for molecular electronics and nanotechnology.  相似文献   
4.
5.
The spatially controlled positioning of functional materials by self-assembly is one of the fundamental visions of nanotechnology. Major steps towards this goal have been achieved using DNA as a programmable building block. This tutorial review will focus on one of the most promising methods: DNA origami. The basic design principles, organization of a variety of functional materials and recent implementation of DNA robotics are discussed together with future challenges and opportunities.  相似文献   
6.
Chiral self-assembled structures formed from organic molecules adsorbed on surfaces have been the subject of intense investigation in the recent decade, owing both to relevance in applications such as enantiospecific heterogeneous catalysis or chiral separation as well as to fundamental interest, for example, in relation to the origin of biomolecular homochirality. A central target is rational design of molecular building blocks allowing transfer of chirality from the molecular to the supramolecular level. We previously studied the surface self-assembly of a class of linear compounds based on an oligo(phenylene ethynylene) backbone, which were shown to form a characteristic windmill adsorption pattern on the Au(111) surface. However, since these prochiral compounds were intrinsically achiral, domains with oppositely oriented windmill motifs and related conformational surface enantiomers were always realized in equal proportion. Here we report on the enantioselective, high yield chemical synthesis of a structurally related but intrinsically chiral compound in which two peripheral tert-butyl substituents are replaced by sec-butyl groups, each containing an (S) chiral center. Using scanning tunneling microscopy under ultrahigh vacuum conditions, we characterize the adsorption structures formed from this compound on the Au(111) surface. The perturbation introduced by the modified molecular design is found to be sufficiently small so structures form that are closely analogous to those observed for the original tert-butyl substituted compound. However, as demonstrated from careful statistical analysis of high-resolution STM images, the introduction of the two chiral (S)-sec-butyl substituents leads to a strong preference for windmill motifs with one orientation, demonstrating control of the chiral organization of the molecular backbones through rational molecular design.  相似文献   
7.
It is demonstrated by scanning tunneling microscopy that coadsorption of a molecular chiral switch with a complementary, intrinsically chiral induction seed on the Au(111) surface leads to the formation of globally homochiral molecular assemblies.  相似文献   
8.
The synthesis of an elongated linear oligonucleotide-functionalised module (ELOM) is described. The ELOM structure is based on an oligo(phenylene ethynylene) backbone substituted with two decyloxy groups. The two termini constitute two salicylaldehyde moieties acting as chemical cross-linkers. Before incorporation into an oligonucleotide sequence the organic part of the module, the elongated linear module (ELM), is functionalised with a dimethoxytrityl group and a phosphoramidite group. This enables incorporation into the middle of 30-mer oligonucleotide sequences by automated DNA synthesis. The obtained ELOMs were characterised by polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. In analogy with previously reported LOM and TOM structures the coupling reactions of the ELOM modules were tested.  相似文献   
9.
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound‐powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA‐loaded nanomotors to directly penetrate through the plasma membrane of GFP‐expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA‐loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor‐based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号