首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
化学   26篇
晶体学   2篇
力学   7篇
物理学   53篇
  2018年   1篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   11篇
  2006年   1篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1995年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
2.
In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4‐butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3‐propanediol and its two methyl‐substituted homologues, 2‐methyl‐1,3‐propanediol and 2,2‐dimethyl‐1,3‐propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed‐field gradient nuclear magnetic resonance (PFG‐NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non‐invasive characterisation tools for catalytic materials, which complement conventional reaction data.  相似文献   
3.
PFG NMR methods are frequently used as a means of probing both coherent and incoherent molecular motions of fluids contained within heterogeneous porous media. The time scale over which molecular displacements can be probed in a conventional PFG NMR experiment is limited by the relaxation characteristics of (1)H - the nucleus that is typically observed. In multiphase systems, due to its sensitivity to susceptibility gradients and interactions with surfaces,(1)H signal is frequently characterized by rapid T(1) and T(2) relaxation. In this work, a heteronuclear approach to PFG NMR is demonstrated which allows the study of molecular displacement over extended time scales (and, consequently, length scales) by exploiting the longer relaxation time of (13)C. The method presented employs the DEPT technique of polarization transfer in order to enhance both the sensitivity and efficiency of (13)C detection. This hybrid coherence transfer PFG technique has been used to acquire displacement propagators for flow through a bead pack with an observation time of up to 35 s.  相似文献   
4.
Rapid surface-to-volume ratio and tortuosity measurement using Difftrain   总被引:2,自引:1,他引:1  
Analysis of diffusion measurements as a function of observation time (Delta), to calculate surface-to-volume ratios (S/V) and tortuosities (kappa), is a useful tool in the characterisation of porous media using NMR. However, using conventional pulsed field gradient (PFG) measurements, this requires long total experiment times (typically hours). Here, we show how the rapid diffusion measurement pulse sequence, Difftrain, can be used to provide the required experimental data much more rapidly (typically within minutes) with a consequential reduction in total experiment time of typically over an order of magnitude. Several novel modifications to the Difftrain pulse sequence are also presented to tailor it to this particular application; these include a variable delay between echoes (to ensure optimal echo position with respect to Delta) and a variable tip angle for the refocusing pulse (to ensure optimal use of available signal). Difftrain is applied to measure both S/V and kappa for a model glass bead pack; excellent agreement is found with both a conventional PFG measurement and with a bulk gravimetric measurement of S/V.  相似文献   
5.
Nuclear magnetic resonance (NMR) relaxation times are shown to provide a unique probe of adsorbate–adsorbent interactions in liquid‐saturated porous materials. A short theoretical analysis is presented, which shows that the ratio of the longitudinal to transverse relaxation times (T1/T2) is related to an adsorbate–adsorbent interaction energy, and we introduce a quantitative metric esurf (based on the relaxation time ratio) characterising the strength of this surface interaction. We then consider the interaction of water with a range of oxide surfaces (TiO2 anatase, TiO2 rutile, γ‐Al2O3, SiO2, θ‐Al2O3 and ZrO2) and show that esurf correlates with the strongest adsorption sites present, as determined by temperature programmed desorption (TPD). Thus we demonstrate that NMR relaxation measurements have a direct physical interpretation in terms of the characterisation of activation energy of desorption from the surface. Further, for a series of chemically similar solid materials, in this case a range of oxide materials, for which at least two calibration values are obtainable by TPD, the esurf parameter yields a direct estimate of the maximum activation energy of desorption from the surface. The results suggest that T1/T2 measurements may become a useful addition to the methods available to characterise liquid‐phase adsorption in porous materials. The particular motivation for this work is to characterise adsorbate–surface interactions in liquid‐phase catalysis.  相似文献   
6.
We present results of the first vibrational photon-echo, transient-grating, and temperature dependent transient-bleaching experiments on a-Si:H. Using these techniques, and the infrared light of a free electron laser, the vibrational population decay and phase relaxation of the Si-H stretching mode were investigated. Careful analysis of the data indicates that the vibrational energy relaxes directly into Si-H bending modes and Si phonons, with a distribution of rates determined by the amorphous host. Conversely, the pure dephasing appears to be single exponential, and can be modeled by dephasing via two-phonon interactions.  相似文献   
7.
8.
The phonon modes of crystalline benzoic acid have been investigated using terahertz time-domain spectroscopy, rigid molecule atom-atom model potential and plane-wave density functional theory lattice dynamics calculations. The simulation results show good agreement with the measured terahertz spectra and an assignment of the terahertz absorption features of benzoic acid is made with the help of both computational methods. Focussing on the strongest interactions in the crystal, we describe each vibration in terms of distortions of the benzoic acid hydrogen bonded dimers that are present in the crystal structure. The terahertz spectrum is also shown to be highly sensitive to the location of the carboxylic acid hydrogen atoms in the cyclic hydrogen-bonded dimers and we have systematically explored the influence of the observed disorder in the hydrogen atom positions on the lattice dynamics.  相似文献   
9.
Although biomolecular dynamics has been investigated using NMR for at least 40 years, only in the past 20 years have internal motions been characterized at atomic resolution throughout proteins and nucleic acids. This development was made possible by multidimensional heteronuclear NMR approaches that provide near complete sequential signal assignments of uniformly labeled biomolecules. Recent methodological advances have enabled characterization of internal dynamics on timescales ranging from picoseconds to seconds, both in solution and in the solid state. The size, complexity and functional significance of biomolecules investigated by NMR continue to grow, as do the insights that have been obtained about function. In this article I review a number of recent advances that have made such studies possible, and provide a few examples of where NMR either by itself or in combination with other approaches has paved the way to a better understanding of the complex relationship between dynamics and biomolecular function. Finally, I discuss prospects for further advances in this field.  相似文献   
10.
MRI volume imaging and flow visualizations are used to investigate solid fine-particle deposition during flow within a random packing of glass spheres. This process is of importance in many fields including filtration, operation of chemical reactors and oil recovery. Visualizations before and during deposition allow us to investigate how the structure of the inter-particle space and the properties of the fines influence the evolution of the structure and hydrodynamics characterizing the porous medium during deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号