首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
化学   86篇
数学   2篇
  2023年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1937年   3篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
2.
Self-sensitisation of photo-oxygen evolution occurs in aqueous dispersions of silver zeolites. In presence of Cl?, chlorine is the photoproduct in acidic medium, and the same type of self-sensitisation occurs. Self-sensitisation means that systems which are first insensitive to light of a certain wavelength become photo-active after they have been illuminated by light of higher energy. For a better understanding of silver zeolites, we have carried out EH-MO calculations on the 6–6 subunit (SBU) of a zeolite, on the 6–6 SBU with an Ag-atom in the center, on the 6–6 SBU with one Ag-atom in the center and one outside on top of the hexagon, and finally on another with one Ag-atom in the center and two Ag-atoms outside, each on top of a hexagon. The Ag0 in the cage of the 6–6 SBU is significantly polarized by the 6–6 SBU environment. The energy barrier to escape the 6–6 SBU is 0.8 eV for Ag0 and 0.5 eV for Ag+. The HOMO of the Ag(6–6 SBU) is a totally symmetric 5s* orbital and the LUMO is a 5pz* type. 5pz*←5s* electronic excitation reduces the energy barrier and allows an (Ag0)* to exit the 6–6 SBU, provided the excited-state lifetime is long enough. The MO picture predicts low-energy charge-transfer transitions from the zeolite framework to the 5s* orbital. The highest occupied orbitals of the zeolite framework are localized on the O-atoms. Interactions between an Ag-atom in the 6–6 SBU and one or two external Ag-atoms are discussed.  相似文献   
3.
4.
Synthesis of 4-Trichlorosilylmethylbenzonitrile and 4-(2-Trichlorosilylethyl)pyridine for Surface Modification of Tin Dioxide We describe the synthesis of 4-(trichlorosilylmethyl)benzonitrile and 4-(2-trichlorosilylethyl)pyridine, starting from 4-(bromomethyl)benzonitrile and trichlorosilane or vinylpyridine and trichlorosilane. Trimethoxysilanes are obtained by reaction of the trichlorosilyl compounds with methyl orthoformate. 4-(Trichlorosilylmethyl)benzonitrile and 4-(2-trichlorosilylethyl)pyridine are used to modify the surface of tin dioxide.  相似文献   
5.
The electronic structures of the 4-4 SBU, the β-cage, and the β-cage with two 4-4 SBU's attached to it have been studied by means of EH-MO calculations. No indication of the formation of a band structure has been found. The HOMO region consists of many closely spaced, localized states, 98.6% of them concentrated on the O-atoms. Reversible color changes of Cu+1 and Ag+1 zeolites observed upon hydration-dehydration experiments can be understood as charge-transfer transitions from the HOMO concentrated on the zeolite O-atoms to the metal cations. As soon as the Cu+1 or Ag+1 are partially hydrated, the ns* and np* states are shifted to higher energies. The luminescence observed with dehydrated Cu+1-zeolites X is caused by a 4p*←HOMO absorption, followed by spontaneous 4s*←4p* emission. After a detailed study of a Cu+1 in the 6-6 SBU, we discuss the electronic structure of a β-cage filled with 1,2,4,8, and 9 Cu+1. In each case, the β-cage is found to be too small to allow the formation of a band structure. The levels caused by the added copper are distinctly quantized. Calculations on [Ag3(H2O)3]3+ in a β-cage are reported. The direct interaction between the Ag-atoms is significant. As a consequence, the states formed by Ag 5s and 5p atomic orbitals are delocalized over the three Ag-centers. In both the Cu+1 and the Ag+1 zeolites, the ligand-field picture is found to be insufficient to explain the electronic structure, when the metal is coordinated to the zeolite oxygen framework.  相似文献   
6.
Host-guest antenna materials   总被引:2,自引:0,他引:2  
The focus of this review is on host-guest composites with photonic antenna properties. The material generally consists of cylindrical zeolite L crystals the channels of which are filled with dye molecules. The synthesis is based on the fact that molecules can diffuse into individual channels. This means that, under the appropriate conditions, they can also leave the zeolite by the same way. In some cases, however, it is desirable to block their way out by adding a closure molecule. Functionalization of the closure molecules allows tuning of, for example, wettability, refractive index, and chemical reactivity. The supramolecular organization of the dyes inside the channels is a first stage of organization. It allows light harvesting within a certain volume of a dye-loaded nanocrystalline zeolite and radiationless transport to both ends of the cylinder or from the ends to the center. The second stage of organization is the coupling to an external acceptor or donor stopcock fluorophore at the ends of the channels, which can trap or inject electronic excitation energy. The third stage of organization is the coupling to an external device through a stopcock molecule. The wide-ranging tunability of these highly organized materials offers fascinating new possibilities for exploring excitation-energy-transfer phenomena, and challenges for developing new photonic devices.  相似文献   
7.
Summary. A convenient synthesis of zeolite L is presented. The size of the crystals can be tuned between 30 and 6000nm, spanning a volume range of seven orders of magnitude. The zeolite L crystals, which typically feature a cylindrical morphology, are synthesized with various aspect ratios ranging from elongated to disc-shaped. The importance of obtaining zeolite crystals with well-defined size and morphology is discussed in view of potential applications of zeolite L containing organic dye molecules as guests.This revised version was published online in February 2005. In the previous version the issue was not marked as a special issue, and the issue title and the editor was missing  相似文献   
8.
The objective of this study was to gain insight into the electronic structure of silver-silver chloride cluster composites and especially into the metal-semiconductor interface. For this purpose a theoretical study of (AgCl)(n) (n=4, 32, 108, 192, and 256), of Ag(m) (m=1-9, 30, 115, 276, and 409), and of the cluster composites Ag(115)-(AgCl)(192) and Ag(409)-(AgCl)(192) has been carried out. Density of levels (DOL), local density of levels (l-DOL), and projection of surface states, as well as projection of properties of individual atoms or groups of atoms obtained in molecular orbital calculations, are shown to be powerful tools for gaining deep insight into the properties of these large systems. The Ag(115)-(AgCl)(192) aggregate, consisting of a cubic Ag(115) cluster without corner atoms on top of a cubic (AgCl)(192) cluster, was found to be remarkably stable with a cluster-to-cluster distance of about 280 pm, and a geometry in which the number of bonding interactions between the silver atoms of Ag(115) and the chloride ions of (AgCl)(192) is at its maximum. A sharp jump in charge distribution occurs at the Ag(115)-(AgCl)(192) composite interface. The first AgCl slab picks up negative charge from the two adjacent silver slabs, so that in total the silver cluster is positively charged. In addition, the core of the silver cluster is positively charged with respect to its outermost layer. The main reason for the charge transfer from the silver cluster to the silver chloride is the newly formed MIGS (metal induced gap states) in the energy-gap range of the silver chloride and the MIdS (metal induced d states) in the d-orbital region. Their wave functions mix with orbitals of the silver cluster and with both the orbitals of the silver and the chloride ions of the silver chloride. The MIGS and the MIdS are of a quite localized nature. In them, nearest neighbor interactions dominate, with the exception of close-lying silver chloride surface states-which mix in to a large extent. We conclude that especially the MIGS not only influence the photochemical properties of silver chloride, but that their existence might be probed by appropriate spectroscopic measurements.  相似文献   
9.
10.
Fluorenone (C13H8O) was inserted into the channels of zeolite L by using gas-phase adsorption. The size, structure, and stability of fluorenone are well suited for studying host-guest interactions. The Fourier transform IR, Raman, luminescence, and excitation spectra, in addition to thermal analysis data, of fluorenone in solution and fluorenone/zeolite L are reported. Normal coordinate analysis of fluorenone was performed, based on which IR and Raman bands were assigned, and an experimental force field was determined. The vibrational spectra can be used for nondestructive quantitative analysis by comparing a characteristic dye band with a zeolite band that has been chosen as the internal standard. Molecular orbital calculations were performed to gain a better understanding of the electronic structure of the system and to support the interpretation of the electronic absorption and luminescence spectra. Fluorenone shows unusual luminescence behavior in that it emits from two states. The relative intensity of these two bands depends strongly on the environment and changes unexpectedly in response to temperature. In fluorenone/zeolite L, the intensity of the 300 nm band (lifetime 9 micros) increases with decreasing temperature, while the opposite is true for the 400 nm band (lifetime 115 micros). A model of the host-guest interaction is derived from the experimental results and calculations: the dye molecule sits close to the channel walls with the carbonyl group pointing to an Al3+ site of the zeolite framework. A secondary interaction was observed between the fluorenone's aromatic ring and the zeolite's charge-compensating cations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号