首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
化学   12篇
数学   5篇
物理学   4篇
  2021年   2篇
  2018年   2篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有21条查询结果,搜索用时 62 毫秒
1.
The multicritical points of the O(N)-invariant N vector model in the large-N limit are re-examined. Of particular interest are the subtleties involved in the stability of the phase structure at critical dimensions. In the limit N → ∞ while the coupling ggc in a correlated manner (the double scaling limit) a massless bound state O(N) singlet is formed and powers of 1/N are compensated by IR singularities. The persistence of the N → ∞ results beyond the leading order is then studied with particular interest in the possible existence of a phase with propagating small mass vector fields and a massless singlet bound state. We point out that under certain conditions the double scaled theory of the singlet field is non-interacting in critical dimensions.  相似文献   
2.
The electrochemical formation and characterization of decanoic, myristic, palmitic, and stearic acid self-assembled monolayers on a native oxide surface of 316L stainless steel have been studied. This work describes a new approach to surface modification of stainless steel in which the self-assembly of n-alkanoic acids is facilitated by applying a potential to the stainless steel in an organic electrolyte solution. While decanoic acid forms a disorganized monolayer as a result of sweeping the potential in an acetonitrile solution containing 0.1 mM of the respective acid, longer acids, that is, myristic and palmitic acids, form highly ordered closed-packed monolayers. This electrochemical approach results in highly reproducible monolayers that are deposited within a shorter time than the traditional assembly process. The monolayers were characterized by cyclic voltammetry, double-layer capacity (ac voltammetry), contact angle measurements, X-ray photoelectron spectroscopy, and external reflection-absorption Fourier transform infrared spectroscopy. The utilization and implications of this modification technique are discussed.  相似文献   
3.
The current kidney allocation system in the United States fails to match donors and recipients well. In an effort to improve the allocation system, the United Network of Organ Sharing (UNOS) defined factors that should determine a new allocation policy, and particularly patients’ potential remaining lifetime without a transplant (pre-transplant survival rates). Estimating pre-transplant survival rates is challenging because the data available on candidates and organ recipients is already “contaminated” by the current allocation policy. In particular, the selection of patients who are offered (and decide to accept) a kidney is not random. We therefore expect differences in mortality-related characteristics of organ recipients and of candidates who have not received transplant. Such differences introduce bias into survival models. Existing approaches for tackling this selection bias either ignore the difference between candidates and recipients or assume that selection to transplant is based solely on patients’ pre-transplant information, irrespective of the potential allocation outcome. We argue that in practice the allocation is dependent on the anticipated allocation outcome, which is a major factor in selection to transplant. Moreover, we show that ignoring the anticipated outcome increases model bias rather than decreases it. In this paper, we propose a novel simulator-based approach (SimBa) that adjusts for the selection bias by taking into account both pre-transplant and anticipated outcome information using simulation. We then fit survival models to kidney transplant waitlist data and compare the different adjustment methods. We find that SimBa not only fits the data best, but also captures a key aspect of the current allocation policy, namely, that the probability of kidney allocation increases in the expected pre-transplant life years.  相似文献   
4.
The high reactivity of acenes can reduce their potential applications in the field of molecular electronics. Although pentacene is an important material for use in organic field-effect transistors because of its high charge mobility, its reactivity is a major disadvantage hindering the development of pentacene applications. In this study, several reaction pathways for the thermal dimerization of acenes were considered computationally. The formation of acene dimers via a central benzene ring and the formation of acene-based polymers were found to be the preferred pathways, depending on the length of the monomer. Interestingly, starting from hexacene, acene dimers are thermodynamically disfavored products, and the reaction pathway is predicted to proceed instead via a double cycloaddition reaction (polymerization) to yield acene-based polymers. A concerted asynchronous reaction mechanism was found for benzene and naphthalene dimerization, while a stepwise biradical mechanism was predicted for the dimerization of anthracene, pentacene, and heptacene. The biradical mechanism for dimerization of anthracene and pentacene proceeds via syn or anti transition states and biradical minima through stepwise biradical pathways, while dimerization of heptacene proceeds via asynchronous ring closure of the complex formed by two heptacene molecules. The activation barriers for thermal dimerization decrease rapidly with increasing acene chain length and are calculated (at M06-2X/6-31G(d)+ZPVE) to be 77.9, 57.1, 33.3, -0.3, and -12.1 kcal/mol vs two isolated acene molecules for benzene, naphthalene, anthracene, pentacene, and heptacene, respectively. If activation energy is calculated vs the initially formed complex of two acene molecules, then the calculated barriers are 80.5, 63.2, 43.7, 16.7, and 12.3 kcal/mol. Dimerization is exothermic from anthracene onward, but it is endothermic at the terminal rings, even for heptacene. Phenyl substitution at the most reactive meso-carbon atoms of the central ring of acene blocks the reactivity of this ring but does not efficiently prevent dimerization through other rings.  相似文献   
5.
Yom-Tov  Galit B.  Chan  Carri W. 《Queueing Systems》2021,99(1-2):163-198
Queueing Systems - Consider a population of customers, each of which needs to decide independently when to arrive to a facility that provides a service during a fixed period of time, say a day....  相似文献   
6.
Generating multivariate Poisson random variables is essential in many applications, such as multi echelon supply chain systems, multi‐item/multi‐period pricing models, accident monitoring systems, etc. Current simulation methods suffer from limitations ranging from computational complexity to restrictions on the structure of the correlation matrix, and therefore are rarely used in management science. Instead, multivariate Poisson data are commonly approximated by either univariate Poisson or multivariate Normal data. However, these approximations are often not adequate in practice. In this paper, we propose a conceptually appealing correction for NORTA (NORmal To Anything) for generating multivariate Poisson data with a flexible correlation structure and rates. NORTA is based on simulating data from a multivariate Normal distribution and converting it into an arbitrary continuous distribution with a specific correlation matrix. We show that our method is both highly accurate and computationally efficient. We also show the managerial advantages of generating multivariate Poisson data over univariate Poisson or multivariate Normal data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
7.
Abstract

Amine-tetrachloromethane charge-transfer complexes have recently been shown to be useful intermediates in transition-metal free solar light-assisted organic synthetic chemistry. Of particular promise is the complex of 1,4-diazabicyclo[2.2.2]octane (DABCO) which may serve as a starting point for several potential reactions involving oxidation of organic compounds. Here we disclose the crystal structure of the [DABCO???CCl4] complex, and computational studies of two possible complex structures in their ground state, as well as in their first singlet and first triplet excited states.  相似文献   
8.
4‐Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation‐induced pKa shift (ΔpKa=3.3) highlights the strong charge–dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a β‐cabamoyloxy ketone catalyzed by aldolase antibody 38C2.  相似文献   
9.
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides providing the monomeric precursors required for DNA replication and repair. The class I RNRs are composed of two homodimeric subunits: R1 and R2. R1 has the active site where nucleotide reduction occurs, and R2 contains the diiron tyrosyl radical (Y*) cofactor essential for radical initiation on R1. Mechanism-based inhibitors, such as 2'-azido-2'-deoxyuridine-5'-diphosphate (N(3)UDP), have provided much insight into the reduction mechanism. N(3)UDP is a stoichiometric inactivator that, upon interaction with RNR, results in loss of the Y* in R2 and formation of a nitrogen-centered radical (N*) covalently attached to C225 (R-S-N*-X) in the active site of R1. N(2) is lost prior to N* formation, and after its formation, stoichiometric amounts of 2-methylene-3-furanone, pyrophosphate, and uracil are also generated. On the basis of the hyperfine interactions associated with N*, it was proposed that N* is also covalently attached to the nucleotide through either the oxygen of the 3'-OH (R-S-N*-O-R') or the 3'-C (R-S-N*-C-OH). To distinguish between the proposed structures, the inactivation was carried out with 3'-[(17)O]-N(3)UDP and N* was examined by 9 and 140 GHz EPR spectroscopy. Broadening of the N* signal was detected and the spectrum simulated to obtain the [(17)O] hyperfine tensor. DFT calculations were employed to determine which structures are in best agreement with the simulated hyperfine tensor and our previous ESEEM data. The results are most consistent with the R-S-N*-C-OH structure and provide evidence for the trapping of a 3'-ketonucleotide in the reduction process.  相似文献   
10.
Systems that include multiple decision rules are encountered in many fields. We focus on systems with several states or levels where the rules determining when and how to move between the levels are based on runs or scans. Our target is to evaluate the proportion of time spent at each level. This information is valuable since it is required for constructing various cost functions. In this paper we address two questions: How to incorporate the system of levels and decision rules into a probabilistic setting and which measures to use in order to evaluate the proportion of time spent at each level. We take a waiting-time approach, and use special features of runs and scans distributions in order to investigate long and short-term measures of the time spent at the different levels of a system. We introduce a short term per-cycle measure and compare it with the finite-time measure. We find that the two measures can differ significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号