首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   4篇
  国内免费   1篇
化学   127篇
物理学   12篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有139条查询结果,搜索用时 806 毫秒
1.
JPC – Journal of Planar Chromatography – Modern TLC - Flavonoid glycosides are much more polar than their aglycones and the two groups of compounds are difficult to separate by planar...  相似文献   
2.
JPC – Journal of Planar Chromatography – Modern TLC - Emodin and twelve phenolic acids (ellagic, gallic, protocatechuic, homoprotocatechuic, caffeic, p-hydroxybenzoic, p-coumaric,...  相似文献   
3.
Measurements by capillary flow injection analysis (CFIA) and capillary electrophoresis (CE) in conjunction with electrochemical detection are described. The detection is based on an end-column electrode arrangement. Several novel electrodes, such as a spherical gold electrode and a dual-microdisk electrode, are presented and characterized regarding their analytical utility. In order to improve the selectivity of CFIA, dual-electrode and multiple-pulse detection are studied using couples of cyanometallates or metallocenes. Capillary electrophoretic experiments with amperometric detection are performed using 50 m i.d. capillaries without any electrical-field decoupler. The practicality and analytical characteristics of this detection strategy are illustrated for the separation of serotonin and some biological precursors and metabolites of neurotransmitter substances.  相似文献   
4.
Non-aqueous capillary electrophoresis with electrochemical detection (NACE-ED) was applied to the determination of cannabinoids in hair. The effect of different electrolyte compositions on the selectivity of the separation of tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol (CBD) and tetrahydrocannabinol carboxylic acid (THCA) was studied. Complete electrophoretic resolution was obtained using a strongly basic background electrolyte consisting of 5 mM sodium hydroxide dissolved in acetonitrile-methanol (1:1). Electrochemical detection yielded well defined signals in the oxidation mode. In order to obtain low limits of detection experimental parameters, which determine the sensitivity and the noise level, were optimized. A crucial parameter for sensitive measurements using a wall-tube flow cell as end-column detector is the distance between the capillary outlet and the working electrode. The highest signal-to-noise ratio using a 50 microm I.D. capillary was obtained at a distance of 25 microm. When the capillary outlet was moved away from the working electrode, thus reducing the strength of the separation field present at the working electrode, a large low frequency noise developed. This rise was attributed to disturbances of the hydrodynamic pattern in the flow cell. Analytical aspects such as sensitivity, reproducibility and selectivity were addressed in this work. The precision of NACE-ED regarding migration time and peak height for a sample containing 1 microg/ml THC was 0.4% and 1.1% (RSD), respectively (n=5). The calibration curve was linear for concentrations ranging between 0.1 and 10 microg/ml (r=0.998). The limit of detection for THC was 37 ng/ml, which is almost two orders of magnitude lower when compared with on-column UV detection. The method was evaluated using hair samples containing cannabinoids as sample material.  相似文献   
5.
The present study is concerned with the application of nonaqueous capillary electrophoresis (NACE) with electrochemical detection (ED) to the separation and quantitative determination of hydrazine (Hy) and its methyl derivatives. The best performance of NACE-ED was found when using 4 mM sodium acetate/10 mM acetic acid/methanol: acetonitrile = 1:2 as the running buffer, with a bare platinum working electrode set at +1.0 V in an end-column amperometric detection cell. The choice and ratio of suitable solvents for the separation and injection media played an essential role for the performance characteristics of the method. The limits of detection for Hy, methylhydrazine, symmetrical dimethylhydrazine, and unsymmetrical dimethylhydrazine were 5, 2, 12, and 1 ng/mL, respectively. This is between one and two orders of magnitude lower than that achieved by previously reported CE-ED methods in aqueous buffer systems in conjunction with various types of chemically modified electrodes. The practical utility of the new NACE-ED methodology is demonstrated in terms of the determination of traces of Hys in spiked environmental samples containing a wide range of explosives and related compounds.  相似文献   
6.
Nonaqueous capillary electrophoresis (NACE) which makes use of organic solvents in place of conventional aqueous electrophoresis buffers is gaining increasing importance among modern separation techniques. Recently, it has been shown that amperometric detection in conjunction with acetonitrile-based NACE offers an extended accessible potential range and an enhanced long-term stability of the amperometric responses generated at solid electrodes. The present contribution takes advantage of the latter aspect to develop reliable systems for NACE with indirect electrochemical detection (IED). In this context, several compounds such as (ferrocenylmethyl)trimethylammonium perchlorate, tris(1,10-phenanthroline)cobalt(III) perchlorate and bis(1,4,7-triazacyclononane)nickel(II) perchlorate were studied regarding their suitability to act as electroactive buffer additives for IED in NACE. The performance characteristics for the respective buffer systems were evaluated. Tetraalkylammonium perchlorates served as model compounds for the optimization of the NACE-IED system. Target analytes choline and acetylcholine could easily be separated and determined by means of NACE-IED. In the case of a buffer system containing 10(-4) M tris(1,10-phenanthroline)cobalt(III) perchlorate the limits of detection were 2.5 x 10(-7) M and 4.6 x 10(-7) M for choline and acetylcholine, respectively. With the elaborated analytical procedure choline could be determined in pharmaceutical preparations.  相似文献   
7.
Matysik FM 《Electrophoresis》2002,23(3):400-407
Over the recent years considerable efforts have been directed to the design of powerful detector arrangements for capillary electrophoresis (CE). The analytical characteristics of the detector have a great influence on the overall analytical performance of CE investigations. The major detection methods in CE, such as UV-Vis absorbance, fluorescence, mass spectrometry and electrochemical detection, have successfully been adapted also to nonaqueous capillary electrophoresis (NACE). However, the different properties of organic solvent systems require some modification of detector concepts and design compared to aqueous CE. The advances of detector development and application in NACE are reported and discussed with emphasis on methodical aspects.  相似文献   
8.
9.
Oxidative stress plays a crucial role in DNA and RNA damage within biological cells. As a consequence, mutations of DNA can occur, leading to disorders like cancer and neurodegenerative and cardiovascular diseases. The oxidative attack of guanosine and 8-oxo-7,8-dihydroguanosine is simulated by electrochemistry coupled to capillary electrophoresis–mass spectrometry. The electrochemical conversion of the compound of interest is implemented in the injection protocol termed electrochemically assisted injection (EAI). In this way, oxidation products of guanosine can be generated electrochemically, separated by capillary electrophoresis, and detected by electrospray ionization time-of-flight mass spectrometry (EAI–CE–MS). A fully automated laboratory-made EAI cell with an integrated buffer reservoir and a compartment holding screen-printed electrodes is used for the injection. In this study, parameters like pH of the sample solution and the redox potential applied during the injection were investigated in terms of corresponding formation of well-known markers of DNA damage. The important product species, 8-oxo-7,8-dihydroguanosine, was investigated in a separate study to distinguish between primary and secondary oxidation products. A comparison of product species formed under alkaline, neutral, and acidic conditions is presented. To compare real biological systems with an analytical approach for simulation of oxidative stress, it is desirable to have a well-defined control over the redox potential and to use solutions, which are close to physiological conditions. In contrast to typical HPLC–MS protocols, the hyphenation of EAI, CE, and MS enables the generation and separation of species involved without the use of organic solvents. Thus, information of the electrochemical behavior of the nucleoside guanosine as well as the primary oxidation product 8-oxo-7,8-dihydroguanosine can be characterized under conditions close to the physiological situation. In addition, the migration behavior found in CE separations of product species can be used to identify compounds if several possible species have the same mass-to-charge values determined by MS detection.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号