首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
化学   19篇
数学   2篇
物理学   18篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
2.
3.
Thin silver films (100–800 nm) were deposited by physical vapor deposition (PVD) on yttria-stabilized zirconia solid electrolyte. The electric percolation as a function of the film thickness was studied during deposition and annealing using a two-electrode in-situ resistance measurement technique. Electrical percolation was achieved in as-deposited films greater than 5.4?±?0.4 nm; however, thermal treatment (550 °C in air) resulted in film dewetting for Ag films as thick as 500 nm and formation of electronically isolated Ag nanoparticles, as was confirmed by SEM and XPS. In thermally treated samples, stable electronic conductivity associated with a continuous percolated network was only observed in samples greater than 600 nm in thickness. The effect of polarization on the electrochemical reactions at the three-phase (electrode-gas-electrolyte) and two-phase (electrode-electrolyte) boundaries of the electrode was investigated by solid electrolyte cyclic voltammetry (SECV) at 350 °C and P O2?=?6 kPa. With the application of positive potential, silver oxide (Ag2O) was found to form along the three-phase boundary and then extends within the bulk of the electrode with increasing anodic potentials. By changing the hold time at positive potential, passivating oxide layers are formed which results in a shift in favor of the oxygen evolution reaction at the working electrode. This oxide forms according to a logarithmic rate expression with thick oxides being associated with decrease in current efficiency for subsequent oxide formation.  相似文献   
4.
Algorithms for the symbolic computation of the NP spin coefficients and curvature components for a given null coframe based on the structural equations of Cartan and the complex vectorial formalism of Debever are described. The efficiency of the algorithms is compared theoretically and also empirically in a number of test cases using implementations in the computer algebra system Maple. The test results confirm the theoretical superiority of the algorithm based on Debever's formalism over the one based directly on Cartan's first structural equations for the computation of the spin coefficients both with respect to execution time and storage requirements. The algorithm for the computation of the curvature components based on Debever's formalism is generally superior to the one based on Cartan's second structural equations but the advantage is not as marked as for the spin coefficients.  相似文献   
5.
Membrane chromatography can overcome some of the limitations of packed bed column chromatography but preparation of adsorptive membranes usually involves complex and harsh chemical modifications. Mixed matrix membranes (MMMs) require only the physical incorporation of an ion exchange resin into the membrane polymer solution prior to membrane casting. An advantage of MMMs not previously exploited is that resins with differing adsorptive functionalities can be conveniently embedded within a single membrane at any desired ratio. This presents the opportunity to customize an adsorptive membrane to suit the expected protein profile of a raw feed stream e.g. bovine whey or serum. In this work, a novel mixed mode interaction MMM customized to extract all major proteins from bovine whey was synthesized in a single membrane by incorporating 42.5 wt% Lewatit MP500 anionic resin and 7.5 wt% SP Sepharose cationic resin into an ethylene vinyl alcohol base polymer casting solution. The mixed mode MMM developed was able to bind both basic and acidic proteins simultaneously from whey, with binding capacities of 7.16±2.24 mg α-lactalbumin g(-1) membrane, 11.40±0.73 mg lactoferrin (LF)g(-1) membrane, 59.21±9.90 mg β-lactoglobulin g(-1) membrane and 6.79±1.11 mg immunoglobulin Gg(-1) membrane (85 mg total protein g(-1) membrane) during batch fractionation of LF-spiked whey. A 1000 m(2) spiral-wound membrane module (200 L membrane volume, 1m(3) module volume) is predicted to be able to produce approximately 25 kg total whey protein per h.  相似文献   
6.
The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14718-14723]. While it is well-established that NO binds to the reduced heme a3 to form a low-spin heme {FeNO}7 species, the role CuB plays in the binding of the second NO remains unclear. Here we present low-temperature FTIR photolysis experiments carried out on the NO complex formed by addition of NO to fully reduced cytochrome ba3. Low-temperature UV-vis, EPR, and RR spectroscopies confirm the binding of NO to the heme a3 and the efficiency of the photolysis at 30 K. The nu(NO) modes from the light-induced FTIR difference spectra are isolated from other perturbed vibrations using 15NO and 15N18O. The nu(N-O)a3 is observed at 1622 cm-1, and upon photolysis, it is replaced by a new nu(N-O) at 1589 cm-1 assigned to a CuB-nitrosyl complex. This N-O stretching frequency is more than 100 cm-1 lower than those reported for Cu-NO models with three N-ligands and for CuB+-NO in bovine aa3. Because the UV-vis and RR data do not support a bridging configuration between CuB and heme a3 for the photolyzed NO, we assign the exceptionally low nu(NO) to an O-bound (eta1-O) or a side-on (eta2-NO) CuB-nitrosyl complex. From this study, we propose that, after binding of a first NO molecule to the heme a3 of fully reduced Tt ba3, the formation of an N-bound {CuNO}11 is prevented, and the addition of a second NO produces an O-bond CuB-hyponitrite species bridging CuB and Fea3. In contrast, bovine cytochrome c oxidase is believed to form an N-bound CuB-NO species; the [{FeNO}7{CuNO}11] complex is suggested here to be an inhibitory complex.  相似文献   
7.
8.
9.
For the CuA site in the protein, sigmau* and piu are the ground and lowest energy excited-states, respectively. EPR data on CuA proteins show a low g parallel value of 2.19 which derives from spin-orbital coupling between sigmau* and piu which requires an energy gap between sigmau* and piu of 3000-4500 cm-1. On the other hand, from paramagnetic NMR studies, it has been observed that the first excited-state is thermally accessible and the energy gap between the ground state and the thermally accessible state is approximately 350 cm-1. This study addressed this apparent discrepancy and evaluated the roles of the two electronic states, sigmau* and piu, in electron transfer (ET) of CuA. The potential energy surface calculations show that both NMR and EPR results are consistent with the electronic/geometric structure of CuA. The anti-Curie behavior observed in paramagnetic NMR studies of CuA results from the thermal equilibrium between the sigmau* and piu states which are at very close energies in their respective equilibrium geometries. Alternatively, the EPR g-value analysis involves the sigmau* ground state in the geometry with a short dCu-Cu where the piu state is a Frank-Condon excited-state with the energy of 3200 cm-1. The protein environment plays a role in maintaining CuA in the sigmau* state as a lowest-energy state with the lowest reorganization energy and high-covalent coupling to the Cys and His ligands for efficient intra- and intermolecular ET with a low-driving force.  相似文献   
10.
A unique feature of Rieske proteins is the pH dependence of their reduction potentials. It has been proposed that protonation of the Nepsilon2 atoms of the two histidine rings ligated to the iron-sulfur cluster is coupled with cluster reduction (electron transfer). We have incorporated [15Ndelta1, 15Nepsilon2]-histidine into the Rieske protein from Thermus thermophilis and have used 15N NMR spectroscopy to determine the pKa values of the histidine residues in the oxidized state of the protein. As expected from studies of a Rieske-type ferredoxin, the signals from the 15Ndelta1 atoms directly bound to iron were too broad to be detected, but broad signals could be detected from the 15Nepsilon2 atom of each of the ligated histidine rings. We measured the chemical shifts of these signals as a function of pH between pH 6 and pH 12 and fitted them to theoretical titration curves. The results yielded well-separated pKa values for the two histidines (7.46 and 9.24), with Hill coefficients close to unity. The pKa values are in excellent agreement with values predicted from the pH dependence of the reduction potentials (7.85 and 9.65).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号