首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2021年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
While tremendous work has been performed to characterize degenerative disc disease through gross morphologic, biochemical, and histologic grading schemes, the development of an accurate and noninvasive diagnostic tool is required to objectively detect changes in the matrix with aging and disc degeneration. In the present study, quantitative magnetic resonance was used to determine if the quality of the nutritional supply to the intervertebral disc at various ages and levels of degeneration could be assessed through measurement of the apparent diffusion coefficients (ADCs). Modifications of the nucleus pulposus matrix content, specifically of water and glycosaminoglycan contents, with age and disc degeneration, were reflected in correlating changes in the ADCs. From unforced stepwise linear regression analyses, relations were established showing that decreases in glycosaminoglycan or water contents in the nucleus pulposus resulted in direct decreases in the ADCs. Relations obtained for the ADCs of the nucleus pulposus were direction dependent, in conformity with the anisotropic diffusion in the intervertebral discs. Changes in matrix integrity, as evidenced by the percentage of denatured collagen, were also detected in the nucleus pulposus with a low positive correlation to the ADC along the height of the disc and an inverse statistically significant regression to the ADC along the anterior to posterior axis of the disc. Correlations between the matrix content and integrity of the annulus fibrosus and its ADCs were not as evident, with only the ADC in the lateral direction of the disc of the anterior annulus fibrosus able to reflect changes in matrix content. The information obtained by the ADCs, particularly of the nucleus pulposus, can potentially be used in combination with quantitative T1, T2, and MT parameters to noninvasively obtain a quantitative assessment of the disc matrix composition and structural integrity.  相似文献   
2.
Journal of Solid State Electrochemistry - In this paper, we report on the development and optimization of a copper anode material coated with a thin polyaniline layer for use in a microbial fuel...  相似文献   
3.
We present a two‐fold study designed to elucidate the adhesion mechanism of human U937 monocytes on novel N‐rich thin films deposited by plasma‐ and VUV photo‐polymerisation, so‐called “PVP:N” materials. It is shown that there exist sharply‐defined (“critical”) surface‐chemical conditions that are necessary to induce cell adhesion. By comparing the film chemistries at the “critical” conditions, we demonstrate the dominant role of primary amines in the cell adhesion mechanism. Quantitative real‐time RT‐PCR experiments using U937 cells that had adhered to PVP:N materials for up to 24 h are presented. The adhesion induces a transient expression of cytokines, markers of macrophage activation, as well as a more sustained expression of PPARγ and ICAM‐I.

  相似文献   

4.
We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号