首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   4篇
化学   67篇
物理学   1篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2012年   4篇
  2011年   6篇
  2009年   3篇
  2008年   6篇
  2007年   9篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
2.
Density functional calculations have been carried out on a series of linearly annelated acenes and their BN analogues. Even though borazine shows aromatic and reactivity behavior parallel with that of benzene, its condensed derivatives show patterns different from those of their hydrocarbon analogues. Nucleus independent chemical shift (NICS) values in acenes suggest that the aromaticity of the inner rings is more than that of benzene, whereas in BN-acenes there is no substantial change in the aromaticity of the individual rings. Molecular electrostatic potential (MESP) is employed to obtain further insights into the bonding and reactivity trends for these systems. The MESP topography patterns of acenes and BN-acenes are substantially different, with BN-acenes showing more localized pi electron features compared to those of acenes. The MESP values at the critical points (CPs) indicate overall lowering of aromaticity in these annelated systems. However, this change is gradual among the BN-acenes.  相似文献   
3.
A quantitative study on cationic closo-tricarbaboranes proved their stability and a possible use for them as weakly coordinating ions due to the dispersal of positive charge throughout the cage. The current study explores computationally a synthetic strategy toward their realization in parallel with the benzyl cation-tropylium ion rearrangement. This study shows that cage expansion along with the incorporation of a carbon atom into the cage starting from the dicarboranyl methyl cation is in the realm of the possible. The rearrangements are found to have favorable energy barriers with one transition state. The geometry of the dicarboranyl methyl cations (benzyl cation analogues) with bent CH(2) groups favors the rearrangement into the tropylium analogues. Thus, the comparison of well-known benzyl ion-tropylium ion rearrangement with similar reactions among polyhedral boranes unravels the feasibility of cationic tricarboranes.  相似文献   
4.
The 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene (bis-titanocene-mu-(Z)-1,2,3-butatriene complex)3 is formed starting from [Cp2Ti(eta2-Me3SiC2SiMe3)] by in situ generated titanocene and 1,4-dichlorobut-2-yne via the 1-titanacyclobut-3-yne (2).  相似文献   
5.
The D3h 3,5-dehydrophenyl cation (I), which may represent the structure of C6H3 ions observed mass spectroscopically, illustrates double aromaticity: two different aromatic systems in orthogonal planes.  相似文献   
6.
7.
8.
9.
The potential energy surfaces of both neutral and dianionic SnC2P2R2 (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6‐311+G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2‐diphosphocyclobutadiene ring (1,2‐DPCB) is capped by the Sn. Interestingly, the structure established by X‐ray diffraction analysis, for R=tBu, is a 1,3‐DPCB ring capped by Sn and it is 2.4 kcal mol?1 higher in energy than the 1,2‐DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3‐DPCB ring, which might originate from the synthetic precursor ZrCp2tBu2C2P2. In the case of the dianionic isomers we observe only a 6π‐electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes. 1 , 4 , 19 The existence of large numbers of cluster‐type isomers in neutral and 6π‐planar structures in the dianions SnC2P2R22? (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D π aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C5H5+ analogues indicates that Sn might be a better isolobal analogue to P+ than to BH or CH+. The variation in global minima in these C5H5+ analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker pπ–pπ bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C5H5? analogues have 6π‐planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the π orbitals involved, and 2) effective overlap of orbitals.  相似文献   
10.
The reaction of [Cp*TaCl(4)], 1 (Cp* = η(5)-C(5)Me(5)), with [LiBH(4)·THF] at -78 °C, followed by thermolysis in the presence of excess [BH(3)·THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH}], 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号