首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
化学   37篇
晶体学   8篇
数学   2篇
物理学   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1998年   4篇
  1997年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
2.
The title compound, C19H15N3, was prepared by condensation of 3‐nitroso­carbazole and aniline with subsequent methyl­ation. The structure is built up of stacks of almost planar mol­ecules. Density functional theory (DFT) calculations predict a completely planar conformation, different from that observed in the crystal lattice. HOMA (harmonic oscillator model of aromaticity) indices, calculated for three aromatic rings, demonstrate the small influence of the azo substituent on π electrons in the carbazole system.  相似文献   
3.
4.
The two isomeric compounds 4‐amino‐ONN‐azoxy­benzene [or 1‐(4‐amino­phenyl)‐2‐phenyl­diazene 2‐oxide], i.e. the α isomer, and 4‐amino‐NNO‐azoxy­benzene [or 2‐(4‐amino­phenyl)‐1‐phenyl­diazene 2‐oxide], i.e. the β isomer, both C12H11N3O, crystallized from a polar solvent in orthorhombic space groups, and their crystal and molecular structures have been determined using X‐ray diffraction. There are no significant differences in the bond lengths and valence angles in the two isomers, in comparison with their monoclinic polymorphs. However, the conformations of the mol­ecules are different due to rotation along the Ar—N bonds. In the α isomer, the benzene rings are twisted by 31.5 (2) and 14.4 (2)° towards the plane of the azoxy group; the torsion angles along the Ar—N bond in the β isomer are 24.3 (3) and 23.5 (3)°. Quantum‐mechanical calculations indicate that planar conformations are energetically favourable for both isomers. The N—H?O hydrogen bonds observed in both networks may be responsible for the deformation of these flexible mol­ecules.  相似文献   
5.
The crystal and molecular structures of two para‐substituted azobenzenes with π‐electron‐donating –NEt2 and π‐electron‐withdrawing –COOEt groups are reported, along with the effects of the substituents on the aromaticity of the benzene ring. The deformation of the aromatic ring around the –NEt2 group in N,N,N′,N′‐tetraethyl‐4,4′‐(diazenediyl)dianiline, C20H28N4, (I), may be caused by steric hindrance and the π‐electron‐donating effects of the amine group. In this structure, one of the amine N atoms demonstrates clear sp2‐hybridization and the other is slightly shifted from the plane of the surrounding atoms. The molecule of the second azobenzene, diethyl 4,4′‐(diazenediyl)dibenzoate, C18H18N2O4, (II), lies on a crystallographic inversion centre. Its geometry is normal and comparable with homologous compounds. Density functional theory (DFT) calculations were performed to analyse the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecules. The most significant changes are observed in the values of the N=N—C—C torsion angles, which for the isolated molecules are close to 0.0°. The HOMA (harmonic oscillator model of aromaticity) index, calculated for the benzene ring, demonstrates a slight decrease of the aromaticity in (I) and no substantial changes in (II).  相似文献   
6.
The structural model for the title compound, C16H12N2O2, was refined using a multipolar atom model transferred from an experimental electron‐density database. The refinement showed some improvements of crystallographic statistical indices when compared with a conventional spherical neutral‐atom refinement. The title compound adopts a half‐chair conformation. The amide N atom lies almost in the plane defined by the three neighbouring C atoms. In the crystal structure, molecules are linked by weak intermolecular C—H...O and C—H...π hydrogen bonds.  相似文献   
7.
The crystal structure of the title compound, C16H23N3O4·CH3CN, was refined using a multipolar atom model transferred from an experimental electron‐density database. The refinement showed some improvement in crystallographic statistical indices compared with the independent atom model. The triazepane ring adopts a twist‐boat conformation. In the crystal structure, the molecule forms intermolecular contacts with 14 different neighbours. There are two N—H...O and one C—H...O intermolecular hydrogen bond.  相似文献   
8.
Noise map validation by continuous noise monitoring   总被引:1,自引:0,他引:1  
This paper presents a comparison of two noise assessments in the Gdansk agglomeration in Poland. One is based on the noise map produced by computational method for the city in 2007, the second one is based on real data from continuous measurements acquired by a noise monitoring network operating in the city since 2008. Differences are shown and analyzed. Additionally, seasonal and weekday influence on noise indicators (LDEN, LD, LE and LN) is analyzed and discussed in this paper.  相似文献   
9.
The green crystals of the title compound, [V(C22H18N2O2)O], represent a mononuclear oxovanadium complex. The central VIV centre has a distorted square‐pyramidal coordination. Two N atoms and two O atoms of the Schiff base ligand define the base of the pyramid, and the oxide O atom is in the apical position. Density functional theory (DFT) calculations were performed to analyse the changes in the geometry of the ligand during the complex formation. The most significant changes are observed in the values of the torsion angles in the vicinity of the donor N atoms. The HOMA index (Harmonic Oscillator Model of Aromaticity) has been calculated to compare the aromaticity of the benzene rings in the complex and its ligand.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号