首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
物理学   2篇
  2006年   1篇
  2004年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The yolk protein precursor vitellogenin (Vtg) in plasma has proved to be a simple and sensitive biomarker for assessing exposure of fish to environmental estrogens. Within international bodies such as the Organization for Economic Cooperation and Development (OECD) work is ongoing to develop screening and testing programmes for endocrine disrupting effects of new chemicals, and in the focus of this development are the fish test species common carp (Cyprinus carpio), fathead minnow (Pimephales promelas), zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes). In this study we have developed quantitative enzyme linked immunosorbent assays (ELISAs) for Vtg in common carp/fathead minnow, zebrafish and Japanese medaka. The assays were developed using a combination of monoclonal and polyclonal fish Vtg antibodies in a sandwich format, using stabilized Vtg from the test species as a standard. The carp Vtg ELISA has a working range of 1–63 ng/mL, a minimal detection limit of 0.6 ng/mL, and may also be used for quantification of Vtg in fathead minnow. In fathead minnow whole-body homogenate samples, the practical detection limit is 400 ng/mL due to the matrix effect. The zebrafish Vtg ELISA has a working range of 0.5–63 ng/mL, a minimal detection limit of 0.4 ng/mL, and a practical detection limit of 200 ng/mL in whole-body homogenate samples. The medaka Vtg ELISA has a working range of 0.25–16 ng/mL, a minimal detection limit of 0.1 ng/mL, and a practical detection limit of 125 ng/mL in whole-body homogenate samples. The intra- and inter-assay variations were below 20% for all assays. The assays were evaluated with sets of representative samples spanning the wide dynamic range of Vtg-levels found in fish exposed to environmental estrogens, and all three assays are currently undergoing international inter-laboratory validation.  相似文献   
2.
The total syntheses of 1,2,7,8,1',2',7',8'-octahydro-psi,psi-carotene (1), 1,2,7,8-tetrahydro-psi,psi-carotene (2), 1,2,1',2'-tetradehydro-psi,psi-carotene (3), 1,2-dihydro-psi,psi-carotene (4), 1,2-dihydor-3,4-didehydro-psi,psi-carotene (5), and 1,2,1',2'-tetrahydro-3,4,3',4'-tetrahydro-psi,psi-carotene (6) are described. The properties of products and intermediates, including the three new apocarotenals 1,2,7,8-tetrahydro-12'-apo-psi-caroten-12'-al (20), 1,2-dihydro-8'-apo-pse-caroten-8'-al (25), and 1,2-dihydro-3,4-didehydro-8'-apo-psi-carotene-8'-al (32), are reported. A fragment ion at M68 on electron impact appears to be characteristic for carotenoids with a 1,2,7,8-tetrahydro end-group.  相似文献   
3.

Background  

Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation.  相似文献   
4.
The nucleide 73Kr has been identified by on-line mass separation as a precursor of β-delayed proton emission. The proton branch is (6.8 ±1.2) × 10−3 proton/decay. The protons populate the ground state and also the first excited 2+ state at 866 keV in 72Se with a relative intensity of (35±9) %. The value of QECBp, where Bp is the proton separation energy for the nucleus 73Br, is found to be 4.85 ±0.30 MeV based on the fraction of proton events preceded by positron decay.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号