首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学   31篇
数学   4篇
物理学   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1992年   1篇
  1982年   2篇
  1968年   1篇
排序方式: 共有37条查询结果,搜索用时 78 毫秒
1.
We study networks of coupled phase oscillators and show that network architecture can force relations between average frequencies of the oscillators. The main tool of our analysis is the coupled cell theory developed by Stewart, Golubitsky, Pivato, and Torok, which provides precise relations between network architecture and the corresponding class of ODEs in RM and gives conditions for the flow-invariance of certain polydiagonal subspaces for all coupled systems with a given network architecture. The theory generalizes the notion of fixed-point subspaces for subgroups of network symmetries and directly extends to networks of coupled phase oscillators. For systems of coupled phase oscillators (but not generally for ODEs in RM, where M ≥ 2), invariant polydiagonal subsets of codimension one arise naturally and strongly restrict the network dynamics. We say that two oscillators i and j coevolve if the polydiagonal θi = θj is flow-invariant, and show that the average frequencies of these oscillators must be equal. Given a network architecture, it is shown that coupled cell theory provides a direct way of testing how coevolving oscillators form collections with closely related dynamics. We give a generalization of these results to synchronous clusters of phase oscillators using quotient networks, and discuss implications for networks of spiking cells and those connected through buffers that implement coupling dynamics.  相似文献   
2.
The isoforms distribution of the glycoprotein antithrombin III (ATIII) derived from human plasma was investigated by means of isoelectric focusing (IEF) in polyacrylamide gels with immobilized pH gradients (IPG) and two-dimensional gel electrophoresis (2-DE) as well as capillary electrophoretic methods. It turned out that the presence of high concentrations of chaotropics (urea, thiourea) and zwitterionic detergents (3-[(3-cholamidepropyl)dimethylammonio]-1-propanesulfonate (CHAPS)) was decisive for attaining good resolution of the protein isoforms. Resolution by IPG-IEF was obtained with excellent reproducibility and pI differences down to 0.01 pH units could be distinguished. ATIII-alpha and ATIII-beta-fractions preseparated by heparin affinity chromatography showed an analogous but shifted spot pattern consisting each of one major and three minor isoforms. The main isoforms of ATIII-alpha and ATIII-beta exhibit pI values of 5.18 and 5.32, respectively, both values determined in the presence of high concentrations of urea. The pI difference of 0.14 pH units correspond to the effect of two sialic acids absent in ATIII-beta. The formation and occurrence of ATIII dimers and trimers turned out to be dependent on the sample preparation. The results obtained by 2-DE were compared with those of capillary zone electrophoresis (CZE) and capillary IEF (CIEF). Quantitative analysis regarding the CZE separated isoforms of plasma derived ATIII yielded a content of about 70% ATIII-alpha main isoform and about 6.6% of ATIII-beta. The pI values of ATIII determined by CIEF with internal calibration were in fair agreement with the pI values of the main isoforms achieved with 2-DE.  相似文献   
3.
An essential part of the modulation of protein‐binding capacity in hydrophobic interaction chromatography is the buffer‐salt system. Besides using “single” electrolytes, multicomponent electrolyte mixtures may be used as an additional tool. Both the protein solubility and the binding capacity depend on the position of a salt in the so‐called Hofmeister series. Specific interactions are observed for an individual protein‐salt combination. For salt mixtures, selectivity, recovery, and binding capacity do not behave like for the single salts that are positioned in between the two mixed components in the Hofmeister series, as the continuous correlation would suggest. Thus, finding strategies for mixed salts could potentially lead to improved capacities in hydrophobic interaction chromatography. Mixtures of ammonium sulfate, sodium citrate, sodium sulfate, sodium chloride, sodium acetate, and glycine were used to investigate the binding capacities for lysozyme and a monoclonal antibody on various hydrophobic resins. Resin capacity for two investigated proteins increases when mixtures consisting of a chaotropic and a kosmotropic salt are applied. It seems to be related to the rather basic isoelectric points of the proteins.  相似文献   
4.
5.
An overview on the utilization of monoliths in proteomics technology will be given. Both silica- and polymer-based monoliths have broad use for microseparation of tryptic peptides in reversed-phase (RP) mode before identification by mass spectrometry (MS) or by MS/MS. For two-dimensional (2D) LC separation of peptides before MS or MS/MS analysis, a combination of ion-exchange, usually cation-exchange (CEX) chromatography with RP chromatography on monolithic supports can be employed. Immobilized metal ion affinity chromatography monoliths with immobilized Fe3+-ions are used for the isolation of phosphopeptides. Monoliths with immobilized affinity ligands are usually applied to the rapid separation of proteins and peptides. Miniaturized reactors with immobilized proteolytic enzymes are utilized for rapid on- or offline digestion of isolated proteins or protein mixtures prior to identification by LC-MS/MS. Monoliths also have broad potential for application in sample preparation, prior to further proteomic analyses. Monolithic supports with large pore sizes can be exploited for the isolation of nanoparticles, such as cells, organelles, viruses and protein aggregates. The potential for further adoption of monolithic supports in protein separation and enrichment of low abundance proteins prior to proteolytic digestion and final LC-MS/MS protein identification will be discussed.  相似文献   
6.
Proteomic methods were used to identify the levels of impurities in three commercial plasma‐derived clotting factor VIII‐von Willebrand factor (FVIII/VWF) concentrates. In all three concentrates, significant amounts of other plasma proteins were found. In Octanate and Haemoctin, two concentrates developed in the 1990s, the major impurities identified were inter‐α inhibitor proteins, fibrinogen and fibronectin. These two concentrates were also found to contain additional components such as clotting factor II (prothrombin) that are known activators of FVIII. In Wilate, a recently developed FVIII/VWF concentrate, the amount of these impurities was significantly reduced. Batch‐to‐batch variations and differences between three investigated products were detected using iTRAQ, an isotope labeling technique for comparative MS, demonstrating the potential value of this technique for quality control analysis. The importance of thorough proteomic investigations of therapeutic FVIII/VWF preparations from human plasma is also discussed.  相似文献   
7.
8.
Convective interaction media (CIM) monoliths provide a stationary phase with a high binding capacity for large molecules and are capable of high flow rates at a very low pressure drop. Used as anion- and cation-exchangers or with affinity ligands such as antibodies, these columns have the potential for processing large volumes of complex biological mixtures within a short time. In the present report, monoclonal antibodies against several rat liver plasma membrane proteins were bound and cross-linked to protein A or protein G CIM affinity columns with a bed volume of only 60 microL. Antigens recognized by bound antibodies and co-eluting (interacting) proteins were rapidly isolated in a single step from either total plasma membrane extracts or subfractions isolated using anion-exchange CIM disk-shaped columns. The isolated antigens and co-eluting proteins were subsequently identified by immunoblot or by LC-MS/MS.  相似文献   
9.
A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation with a quadrupole ion trap. Fragmentation is dominated in both cases by series of a-, b- and y-type ions and [M + H - HCN]+ ions. Peptide bonds adjacent to the fluorescence label were less susceptible to cleavage than the bonds of the non-derivatized peptide ions. In general, the resulting fragment ion patterns were less complex than those of the underivatized peptides.  相似文献   
10.
The application of proteomics technology in purification of proteins from human plasma and for characterization of plasma-derived therapeutics has been recently discussed. However, until now, the impact of this technology on the plasma protein fractionation and analysis of the final product has not been realized. In the present work, we demonstrate the use of proteomic techniques the monitoring of the first step of the plasma fractionation by use of anion-exchange chromatography. This chromatographic method is frequently used in the purification scheme for isolation of vitamin K dependent clotting factors II, VII, IX and X, and clotting inhibitors protein C and protein S, as well as inter-alpha inhibitor proteins (IaIp). After the removal of immunoglobulin G and non-binding proteins in the flow-through fraction, albumin and weakly bound proteins were eluted with low concentration of sodium chloride. The proteins that strongly bind to the anion-exchange column were eluted by higher salt concentrations. The fractions of interest were analyzed, and proteins were identified by LC-ESI-MS/MS. By use of this method, not only candidates for therapeutic concentrates, but also some potentially harmful components were identified. This strategy was very helpful for further process optimization, fast identification of target proteins with relatively low abundance, and for the design of subsequent steps in their removal or purification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号