首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学   27篇
数学   1篇
  2022年   4篇
  2019年   6篇
  2017年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Structures of the phenol-imine and quinoid tautomers of the titled ligand have been obtained from the ab initio and hybrid density functional methods. The phenol-imine tautomer having bifurcated NH hydrogen bonds (1.799 and 1.833 Å), has been predicted to be 14.9 kJ mol−1 more stable than the quinoid tautomer wherein OH hydrogen bonded interactions are present. Charge distributions in these tautomers have been calculated using the molecular electrostatic potential as a tool. Consequences of hydrogen bonding to the vibrational spectra are discussed.  相似文献   
2.
3.
4.
In the present work, we have studied the electronic structure, molecular electrostatic potential (MEP) and hydrogen bonding in DMSO-ethanol, DMSO-methanol and DMSO-water complexes by employing the MP2 method. Different conformers were simulated on the basis of possible binding sites guided by molecular electrostatic potential topology. The stronger hydrogen bonded interaction lowers the energy of the conformer. Molecular electron density topology and natural bond orbital analysis were used to explain the strength of interactions. Experimental vibrations are also compared with the calculated normal vibrations. Blue shift is predicted for SC vibration in experimental and theoretical spectra as well. Molecular electrostatic potential and topology are used to understand the interaction strength of the conformer.  相似文献   
5.
In the present study, substituted formylnaphthalenyloxymethyl‐triazolyl‐N‐phenylacetamide derivatives ( 6a – k ) have been designed and synthesized employing click chemistry approach and evaluated for their in vitro antifungal and antibacterial activities. All the newly synthesized compounds were thoroughly characterized by 1H NMR, 13C NMR, and HRMS spectral techniques. Among the screened compounds, 6d , 6e , 6j , and 6k have shown good antifungal and antibacterial activities. Compound 6k has shown very effective antimicrobial activity. We further performed exploratory docking studies on microbial DNA gyrase to rationalize the in vitro biological data and to demonstrate the mechanism of antimicrobial activity. This is the first report to demonstrate the formylnaphthalenyloxymethyl, triazole, and N‐phenylacetamide hybrids as potential antimicrobial agents.  相似文献   
6.
Successive introduction of nitrogen atoms in the cubyl corners instead of C-NO2 groups of octanitrocubane (CNO2)8, the most powerful explosives known to date, leads to a class of energy-rich compounds known as nitroazacubanes. In present work the ab initio Hartree-Fock and hybrid density functional calculations have been carried out on the possible conformers of (CNO2)(8-alpha)Nalpha (with alpha=0-8), nitroazacubanes. The charge distributions in these systems have been derived using the topography of the molecular electrostatic potential and electron density. Molecular electrostatic potential investigations reveal that of different nitroazacubane conformers, the electron-rich regions around nitro oxygens of the lowest energy conformer having face opposite nitrogen atoms within a cube are more delocalized. These conformers are predicted to have the largest difference of the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital relative to the other conformers. The dipole moments of nitroazacubanes are dependent on the nitrogen sites within a cube, caused by the resultant of C-N bond moments and nearly insensitive to position of the NO2 groups. The lowest frequency vibration (522 cm(-1)) suggests octa-azacubane having robust structure in the nitroazacubane series. Substitution of nitrogen atom instead of C-NO2 group leads to increase in electron density at the bond critical point of the X-N (X=C or N) bonds in a cube. The heats of formation of different nitroazacubanes were calculated by using the isodesmic reaction approach. The present calculation has shown that for the di- though hexanitroazacubanes the most destabilized conformer possess largest dipole moment and the heat of formation as well. A linear correlation of the electron density at the bond critical point of X-N bonds and the heat of formation has been obtained.  相似文献   
7.
Energetics and the charge distributions in azacubanes (C8NH8–) have been obtained using the ab initio Hartree–Fock, second-order Mø øller–Plesset perturbation theory and hybrid density functional methods. For diazacubane to hexaazacubane the lowest-energy conformers have nitrogen atoms occupying the face opposite corners of a cube. The topography of the molecular electrostatic potential and the electron density of azacubane conformers have been investigated. The electrostatic potential studies have shown that successive substitution of nitrogen instead of CH groups of cubane engenders smaller and more localized electron-rich regions around the nitrogens of a cube. Further the bond ellipticity and the electron density at the bond critical point of the X–N bonds (X=C or N) in a cubanoid increase from azacubane to octaazacubane. The heats of formation of azacubanes calculated by the isodesmic reaction approach using different levels of theory correlate well with the electron density at the bond critical point of X–N (X=C or N) bonds in a cubanoid.  相似文献   
8.
Research on Chemical Intermediates - We report synthesis and in vivo antihyperglycemic evaluation of new 3-substituted...  相似文献   
9.
A series of molecules containing acetylphenoxymethyl, triazole, and N‐phenylacetamide moieties were synthesized via the click chemistry approach. All the synthesized compounds were screened for their antimicrobial activities in vitro. The synthesized compounds 8a , 8b , 8m , and 8n showed better activities. We further performed exploratory docking studies to gain some insight regarding the molecular mechanism of antibacterial action of these compounds that could guide further structure‐activity relationship (SAR) studies. We examined the interaction of the most active compound with DNA gyrase (pdb id:1KZN). Based on antimicrobial and docking studies, the compounds 8a , 8b , 8m , and 8n were identified as potential antimicrobial agents.  相似文献   
10.

Cellulose dissolution in the viscose process has been facilitated through derivatization by carbon disulphide (CS2) at xanthation stage by converting alkali cellulose (AC) to cellulose xanthate (CX). CX formation has been always accompanied with sulphur based byproducts formation as dictated by the mechanism published in earlier study (Gondhalekar et al. (Cellulose 26 3 1595–1604, 2019)). The sulphur byproducts formed during viscose synthesis are sodium sulphide (Na2S), sodium trithiocarbonate (Na2CS3: TTC) and other minor sulphur compounds. These byproducts continue to form during ripening process as dictated by time and temperature coupled with concentration of free caustic and CS2 present in the system. These byproducts get converted into sodium sulphate (Na2SO4), hydrogen sulphide (H2S), CS2 and other sulphurous compounds during spinning. Overall, uncontrolled ripening without parametric optimization adversely impacts raw material (RM) consumption and creates sustainability challenges. Overall optimization based on viscose process fundamental insights presented in this study will effectively help in achieving operational excellence by reducing rate of undesired reactions to improve RM specific consumption and will compliment overall sustainability efforts in viscose industry.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号