首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
化学   55篇
物理学   2篇
  2023年   1篇
  2018年   1篇
  2012年   2篇
  2011年   10篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   8篇
  1993年   1篇
  1984年   3篇
排序方式: 共有57条查询结果,搜索用时 281 毫秒
1.
It is well-known that the C=N stretching vibration in acetonitrile is sensitive to solvent. Therefore, we proposed in this contribution to use this vibrational mode to report local environment of a particular amino acid in proteins or local environmental changes upon binding or folding. We have studied the solvent-induced frequency shift of two nitrile-derivatized amino acids, which are, AlaCN and PheCN, in H(2)O and tetrahydrofuran (THF), respectively. Here, THF was used to approximate a protein's hydrophobic interior because of its low dielectric constant. As expected, the C=N stretching vibrations of both AlaCN and PheCN shift as much as approximately 10 cm(-1) toward higher frequency when THF was replaced with H2O, indicative of the sensitivity of this vibration to solvation. To further test the utility of nitrile-derivatized amino acids as probes of the environment within a peptide, we have studied the binding between calmodulin (CaM) and a peptide from the CaM binding domain of skeletal muscle myosin light chain kinase (MLCK(579-595)), which contains a single PheCN. MLCK(579-595) binds to CaM in a helical conformation. When the PheCN was substituted on the polar side of the helix, which was partially exposed to water, the C=N stretching vibration is similar to that of PheCN in water. In constrast, when PheCN is introduced at a site that becomes buried in the interior of the protein, the C=N stretch is similar to that of PheCN in THF. Together, these results suggest that the C=N stretching vibration of nitrile-derivatized amino acids can indeed be used as local internal environmental markers, especially for protein conformational studies.  相似文献   
2.
We studied here the binding of the mastoparan X peptide to a zwitterionic lipid bilayer (POPC) and demonstrated that nitrile-derivatized amino acids can be used to determine the hydration state (or change in hydration state) of specific sites of membrane-interactive peptides (upon binding). We have also shown that polarized ATR-FTIR measurements can further be used to uncover information regarding the spatial orientation of individual side chains as well as their conformational preference within the lipid bilayer.  相似文献   
3.
This study shows that incorporation of [Rub2m-OH]2+ at the N-terminus of the Fs peptide enhances its stability by approximately 0.15 kcal/mol through the mechanism of dipole-dipole coupling at the excited state, suggesting that photoinduced charge generation at a well-controlled and specific location provides a convenient means to trigger helix-coil transition on nanosecond or even faster time scales.  相似文献   
4.
5.
The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. (13)C-(2)H rotational-echo double-resonance NMR experiments of (13)C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific (2)H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.  相似文献   
6.
The design of β-peptide foldamers targeting the transmembrane (TM) domains of complex natural membrane proteins has been a formidable challenge. A series of β-peptides was designed to stably insert in TM orientations in phospholipid bilayers. Their secondary structures and orientation in the phospholipid bilayer was characterized using biophysical methods. Computational methods were then devised to design a β-peptide that targeted a TM helix of the integrin α(IIb)β(3). The designed peptide (β-CHAMP) interacts with the isolated target TM domain of the protein and activates the intact integrin in vitro.  相似文献   
7.
8.
A study primarily focused on the interactions between ADP-stimulated human platelets and PEGylated polystyrene substrates is described in this paper. The platelet–surface interactions were investigated using colorimetric acid phosphatase assay. Two types of amine-containing polymeric hydrogel materials based on poly(ethylene glycol) (PEG), H2N–PEG–OCH3 and H2N–PEG–NH2, were used to PEGylate polystyrene surfaces derivatized with maleic anhydride by amidation at alkaline pH. In addition, comparative studies using surfaces non-covalently adsorbed by bovine serum albumin (BSA) or fibrinogen (Fg) were also conducted. The assay results showed that no significant platelet adhesion was observed when PEGylated surfaces or BSA-coated surfaces were exposed to unstimulated gel-filtered platelets (GFP). However, upon ADP-stimulation, platelet adhesion to the surfaces under investigation in this study all increased to varying degrees. Most importantly, the results showed that polystyrene surfaces PEGylated using H2N–PEG–NH2 were most effective in resisting platelet adhesion when assays were performed using ADP-stimulated GFP. By PEGylating the surfaces of polystyrene microtiter wells via the amidation reaction described in this paper, it is demonstrated that (i) higher degree of surface PEGylation is favored at more alkaline pH and (ii) polystyrene substrates capable of more effectively resisting the adhesion of ADP-stimulated GFP can be obtained by the PEGylation reaction carried out at pH 9.1 using H2N–PEG–NH2.  相似文献   
9.
Polypeptides incorporating D-amino acids occasionally occur in nature and are an important class of pharmaceutical molecules. With the use of heterochiral Monte Carlo (HCMC), a method inspired by the de novo design of proteins, we develop peptide scaffolds for interacting with a molecular target, a left-handed alpha-helix. The HCMC approach concurrently seeks to optimize a peptide sequence, its internal conformation, and its docked conformation with a target surface. Several major classes of interactions are observed: (1) homochiral interactions between two alphaL helices, (2) heterochiral interactions between an alphaL and an alphaR helix, and (3) heterochiral interactions between the alphaL target and novel nonhelical structures. We explore the application of HCMC to simulating the preferential enantioselectivity of heterochiral complexes. Implications for biomimetic design in molecular recognition are discussed.  相似文献   
10.
Thioamides are sterically almost identical to their oxoamide counterparts, but they are weaker hydrogen bond acceptors. Therefore, thioamide amino acids are excellent candidates for perturbing the energetics of backbone-backbone H-bonds in proteins and hence should be useful in elucidating protein folding mechanisms in a site-specific manner. Herein, we validate this approach by applying it to probe the dynamic role of interstrand H-bond formation in the folding kinetics of a well-studied β-hairpin, tryptophan zipper. Our results show that reducing the strength of the peptide's backbone-backbone H-bonds, except the one directly next to the β-turn, does not change the folding rate, suggesting that most native interstrand H-bonds in β-hairpins are formed only after the folding transition state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号