首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
化学   28篇
晶体学   1篇
力学   2篇
数学   1篇
物理学   2篇
  2023年   1篇
  2020年   1篇
  2015年   1篇
  2014年   3篇
  2012年   2篇
  2010年   2篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有34条查询结果,搜索用时 671 毫秒
1.
We calculate energy barriers of atom- and proton-transfer reactions in hydrogen-bonded complexes in the gas phase. Our calculations do not involve adjustable parameters and are based on bond-dissociation energies, ionization potentials, electron affinities, bond lengths, and vibration frequencies of the reactive bonds. The calculated barriers are in agreement with experimental data and high-level ab initio calculations. We relate the height of the barrier with the molecular properties of the reactants and complexes. The structure of complexes with strong hydrogen bonds approaches that of the transition state, and substantially reduces the barrier height. We calculate the hydrogen-abstraction rates in H-bonded systems using the transition-state theory with the semiclassical correction for tunneling, and show that they are in excellent agreement with the experimental data. H-bonding leads to an increase in tunneling corrections at room temperature.  相似文献   
2.
Progress in the photodynamic therapy (PDT) of cancer should benefit from a rationale to predict the most efficient of a series of photosensitizers that strongly absorb light in the phototherapeutic window (650–800 nm) and efficiently generate reactive oxygen species (ROS=singlet oxygen and oxygen‐centered radicals). We show that the ratios between the triplet photosensitizer–O2 interaction rate constant (kD) and the photosensitizer decomposition rate constant (kd), kD/kd, determine the relative photodynamic activities of photosensitizers against various cancer cells. The same efficacy trend is observed in vivo with DBA/2 mice bearing S91 melanoma tumors. The PDT efficacy intimately depends on the dynamics of photosensitizer–oxygen interactions: charge transfer to molecular oxygen with generation of both singlet oxygen and superoxide ion (high kD) must be tempered by photostability (low kd). These properties depend on the oxidation potential of the photosensitizer and are suitably combined in a new fluorinated sulfonamide bacteriochlorin, motivated by the rationale.  相似文献   
3.
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT – redaporfin – currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.  相似文献   
4.
Charge-recombination rates in contact radical-ion pairs, formed between aromatic hydrocarbons and nitriles in supercritical CO(2) and heptane, decrease with the exothermicity of the reactions until they reach -70 kcal mol(-1), but from there on an increase is observed. The first decrease in rate is typical of the "inverted region" of electron-transfer reactions. The change to an increase in the rate for ultra-exothermic electron transfer indicates a new free-energy relationship. We show that the resulting "double-inverted region" is not due to a change in mechanism. It is an intrinsic property of electron-transfer reactions, and it is due to the increase of the reorganisation energy with the reaction exothermicity.  相似文献   
5.
The rates of electron transfer reactions in azurin and plastocyanin are calculated with the Intersecting-State Model and compared with experimental data. The calculated distance, free-energy and temperature dependencies of the intraprotein rates in Ru-modified azurins are in good agreement with the experiment. These calculations do not require the fitting of any parameters. Significant tunneling contributions to the room temperature rate are found in some systems. In some cases the symmetry or the orientation of the donor and acceptor orbitals are not favorable and the ET rates are reduced by factors exceeding 4 orders of magnitude.  相似文献   
6.
Steady-state fluorescence of 4'-dimethylamino-3-hydroxyflavone (DMA3HF) was observed in supercritical carbon dioxide (scCO(2)). Excited-state intramolecular proton transfer (ESIPT) occurs resulting in two well-separated emission bands corresponding to the normal and tautomer forms. As the scCO(2) density exceeds 0.7 g/mL, the relative intensity of the two bands tends to a constant value, comparable to that observed for organic solvents with ET(30) = 33.0 +/- 0.5 kcal/mol, such as toluene and di-n-butyl ether. At lower densities, the substantial decrease of the total fluorescence intensity (a 600-fold decrease as the pressure decreases from 100 to 80 bar) is accompanied by an even more accentuated decrease of the tautomer fluorescence. This can be explained by a shift in the equilibrium between normal and tautomer forms, concomitant with a more efficient quenching of the less solvated fluorophore, that may change the thermodynamic control of the relative population of the two emissive species to a kinetic control.  相似文献   
7.
The 1,3-dipolar cycloaddition of azomethine ylides with DMAD in supercritical carbon dioxide is reported. The photolysis reaction conditions were optimized with a suitable adjustment of pressure, temperature, irradiation time and co-solvent concentration leading to a more efficient reaction than in neat acetonitrile. Similar results were observed using thermal reaction conditions. Supercritical carbon dioxide with a minute co-solvent addition is shown to be a very efficient medium for promoting this type of cycloadditions.  相似文献   
8.
For systems that exhibit a second-order phase transition with a spontaneously broken continuous O(N) symmetry at low temperatures, we give a criterion for judging at which temperature T(K) long-range directional fluctuations of the order field destroy the order when approaching the critical temperature from below. The temperature T(K) lies always significantly below the famous Ginzburg temperature T(G) at which size fluctuations of finite range become important.  相似文献   
9.
The spectroscopic, photochemical, and biological studies of 5,10,15,20-tetrakis[2,6-difluoro-5(N-methylsulfamylo)phenyl]porphyrinate Zn(II) (ZnF2PMet) were carried out including absorption and fluorescence spectra, fluorescence quantum yields, triplet absorption spectra, triplet lifetimes, singlet oxygen quantum yield, and reactive oxygen species (ROS) detection under biological conditions and compared with its free-base analog (F2PMet). Zinc coordination into the porphyrin ring results in decrease of hydrophobicity and in higher cellular uptake. F2PMet localized specifically in endoplasmic reticulum and mitochondria while the ZnF2PMet is more diffused all over the cell, bonded to membrane proteins, as assessed by fluorescence microscopy. Zn-porphyrin exhibits greater singlet oxygen quantum yield than its free-base analog. Studies with fluorescent probes confirm that the ZnF2PMet produces mostly singlet oxygen, whereas F2PMet generates more hydroxyl radicals as the ROS. F2PMet is a more effective photosensitizer in vitro than its zinc complex, thus, the final photodynamic effect depends more on the nature of ROS than on the higher cellular uptake.  相似文献   
10.
Electron tunneling through a square potential energy barrier is used to calculate the distance-dependent factors of electron transfer (ET) processes in metal-monolayer-metal junctions, donors and acceptors dispersed in rigid organic glasses, intramolecular ET in rigid donorbridge—acceptor species in solution and redox centers attached to electrodes through adsorbed monolayers. This tunneling model of distancedependent non-adiabatic factors is incorporated in the intersecting state model (ISM). The result is a simple semiclassical theory which is used to calculate the rates of non-adiabatic ET reactions. When the electron is originally located in a π* molecular orbital of the donor and the reaction free energy is no lower than approximately −50 kJ mol−1, no adjustable parameters are necessary to calculate the intramolecular ET rates from a donor, through a rigid bridge, to an acceptor. Such calculated rates are within an order of magnitude of the experimental values. The model can also account for the ET rates of more exothermic reactions provided that the value of an empirical parameter, which is constant for structurally related reactants and solvents of similar polarity, is estimated. The physical meaning of this parameter is related to the dynamics of the reactions. The profiles of the distance and free energy dependences of photoinduced ET rates are closely reproduced. The occurrence of distance-dependent non-adiabatic factors in intermolecular σ*-d ETs is rationalized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号