首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1994年   1篇
排序方式: 共有12条查询结果,搜索用时 160 毫秒
1.
Summary The monoperoxo complexes, M2[VO(HEDTA)(O2)]· 4H2O, where M is K+ or NH 4 + and H4EDTA is ethylene-diaminetetraacetic acid, were prepared and characterized by Raman and i.r. spectra in the solid state and in aqueous solution. The single crystal X-ray study revealed a pentagonal bipyramidal anion structure with a tetradentate HEDTA(3—) ligand. The decomposition of complexes in aqueous solution to blue vanadium(IV) complexes as end products proceeds via a nonperoxo complex of vanadium.  相似文献   
2.
In the crystal structure of the title compound, C11H13NO2, there are strong inter­molecular O—H⋯N hydrogen bonds which, together with weak intra­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules, held together by weak inter­molecular C—H⋯O hydrogen bonds. A theoretical investigation of the hydrogen bonding, based on density functional theory (DFT) employing periodic boundary conditions, is in agreement with the experimental data. The cluster approach shows that the influence of the crystal field and of hydrogen‐bond formation are responsible for the deformation of the 2‐oxazoline ring, which is not planar and adopts a 4T3 (C3TC2) conformation.  相似文献   
3.
The structure analysis of so‐called 9CaO·4CrO3·Cr2O3 proved it to be the title compound, decacalcium hexakis[chromate(V)] chromate(VI), with the simultaneous presence of unusual chromium oxidation states. The structure determination was carried out on a crystal that had inversion twinning. The CrVIO4 tetrahedron is situated on a threefold axis and is disordered over two possible orientations that share three O atoms, while the CrVO4 tetrahedra are in general positions and are ordered. The charge is balanced by Ca2+ cations, one of which is located on a threefold axis. The Ca2+ ions are coordinated by six, seven or eight O atoms. The compound is a significant phase in the CaO–CrOx system and its formation reduces the refractoriness of calcium‐rich compositions in an oxidizing atmosphere.  相似文献   
4.
The title racemic complex, bis[μ‐N‐(2‐oxidobenzylidene)‐d ,l ‐glutamato(2−)]bis[(isoquinoline)copper(II)] ethanol disolvate, [Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O, adopts a square‐pyramidal CuII coordination mode with a tridentate N‐salicylideneglutamato Schiff base dianion and an isoquinoline ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the adjacent chelate molecule at an apical distance of 2.487 (3) Å, building a dimer located on the crystallographic inversion center. The Cu...Cu spacing within the dimers is 3.3264 (12) Å. The ethanol solvent molecules are hydrogen bonded to the dimeric complex molecules, forming infinite chains in the a direction. The biological activity of the title complex has been studied.  相似文献   
5.
6.
In the structure of trans‐bis(ethanol‐κO)tetrakis(1H‐imidazole‐κN3)copper(II) bis[μ‐N‐(2‐oxidobenzylidene)‐D,L‐glutamato]‐κ4O1,N,O2′:O2′4O2′:O1,N,O2′‐bis[(1H‐imidazole‐κN3)cuprate(II)], [Cu(C3H4N2)4(C2H6O)2][Cu2(C15H14N3O5)2], both ions are located on centres of inversion. The cation is mononuclear, showing a distorted octahedral coordination, while the anion is a binuclear centrosymmetric dimer with a square‐pyramidal copper(II) coordination. An extensive three‐dimensional hydrogen‐bonding network is formed between the ions. According to B3LYP/6–31G* calculations, the two equivalent components of the anion are in doublet states (spin density located mostly on CuII ions) and are coupled as a triplet, with only marginal preference over an open‐shell singlet.  相似文献   
7.
Crystals of the title racemic compound, C11H13NO2, consist of two types of mol­ecules (conformers); one mol­ecule has an exocyclic OH group in an equatorial position and the other has this group in an axial position. Consequently, the hydrogen‐bond schemes for the two mol­ecules are different. The mol­ecules with equatorial OH groups create infinite parallel chains (formed by the same enantio­mer), connected by centrosymmetric dimers of mol­ecules (of mixed enantio­mers), both with axial OH groups. Possible inter­conversion of the conformers and the flexibility of the mol­ecule were studied by means of different MP2 and density functional theory (DFT) methods. The optimization of the structure by the DFT method confirmed the types of the hydrogen bonds.  相似文献   
8.
We investigate and compare the performance of four optical transport schemes for distributing Local Multipoint Distribution Service (LMDS) signals using an optical fiber backbone.  相似文献   
9.
To establish the structure of ferric ions in strongly alkaline (pH > 13) environments, aqueous NaOH solutions supersaturated with respect to Fe(III) and the solid ferric-hydroxo complex salts precipitating from them have been characterized with a variety of experimental techniques. From UV measurements, in solutions of pH > 13, only one kind of Fe(III)-hydroxo complex species was found to be present. The micro crystals obtained from such solutions were proven to be a new, so far unidentified solid phase. M?ssbauer spectra of the quick-frozen solution and that of the complex salt indicated a highly symmetrical ferric environment in both systems From the EXAFS and XANES spectra, the environment of the ferric ion in these solutions (both native and quick-frozen) and in the complex salt was found to be different. In the complex salt, the bond lengths are consistent with an octahedral coordination around the ferric centres. In solution, the coordination geometry of Fe(III) is most probably tetrahedral. Our results demonstrate that in strongly alkaline aqueous solutions, ferric ions behave very similarly to other structurally related tervalent ions, like Al(III) or Ga(III).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号