首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学   13篇
数学   1篇
物理学   6篇
  2015年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1993年   3篇
  1992年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.

Background  

The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP).  相似文献   
2.
Advances in molecular biology may mean that almost any protein sequence can be synthesised, but perhaps this has served to highlight the inadequacy of theoretical work. For a given protein fold, it is probably not possible to reliably predict an "ideal" sequence. We identify and survey several aspects of the problem. Firstly, it is not clear what is the best way to score a sequence-structure pair. Secondly, there is no consensus as to what the score function should represent (free energy or some abstract measure of sequence-structure compatibility). Finally, the number of possible sequences is astronomical and searching this space poses a daunting optimisation problem. These problems are discussed in the light of recent experimental successes.  相似文献   
3.
4.
We report ultrafast femtosecond transient absorption measurements of energy-transfer dynamics for the antenna protein phycoerythrin 545, PE545, isolated from a unicellular cryptophyte Rhodomonas CS24. The phycoerythrobilins are excited at both 485 and 530 nm, and the spectral response is probed between 400 and 700 nm. Room-temperature measurements are contrasted with measurements at 77 K. An evolution-associated difference spectra (EADS) analysis is combined with estimations of bilin spectral positions and energy-transfer rates to obtain a detailed kinetic model for PE545. It is found that sub pulse-width dynamics include relaxation between the exciton states of a chromophore dimer (beta 50/60) located in the core of the protein. Energy transfer from the lowest exciton state of the phycoerythrobilin (PEB) dimer to one of the periphery 15,16-dihydrobiliverdin (DBV) bilins is found to occur on a time scale of 250 fs at room temperature and 960 fs at 77 K. A host of energy-transfer dynamics involving the beta 158, beta 82, and alpha 19 bilins occur on a time scale of 2 ps at room temperature and 3 ps at 77 K. A final energy transfer occurs between the red-most DBV bilins with a time scale estimated to be approximately 30 ps. The role of the centrally located phycoerythrobilin dimer is seen as crucial-spectrally as it expands the cross-section of absorption of the protein; structurally as it sits in the middle of the protein acting as an intermediary trap; and kinetically, as the internal conversion and subsequent red-shift of the excitation is extremely fast.  相似文献   
5.
Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein–polymer bioconjugate PNIPAM‐b‐amilFP497 composed of thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) and a green‐fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co‐)encapsulate the fluorescent drug doxorubicin and the fluorescent light‐harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM‐FRET), we can distinguish the co‐encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane.  相似文献   
6.
DD Shivagan  PM Shirage  SH Pawar 《Pramana》2002,58(5-6):1183-1190
Metal/superconductor/semiconductor (Ag/Hg-1212/CdSe) hetero-nanostructures have been fabricated using pulse-electrodeposition technique and are characterized by X-ray diffraction (XRD), full-width at half-maximum (FWHM) and scanning electron microscopy (SEM) studies. The junction capacitance of Ag/Hg-1212, Hg-1212/CdSe and Ag/Hg-1212/CdSe heterojunctions is measured in dark and under laser irradiation at room temperature. The nature of the junction formed and built-in-junction potentials were determined. The increase in carrier concentration across the junction due to photo-irradiation has been observed.  相似文献   
7.
PM Shirage  DD Shivagan  SH Pawar 《Pramana》2002,58(5-6):1191-1198
One of the innovative technological directions for the high-temperature superconductors has been persued by fabricating the heteroepitaxial multilayer structures such as superconductor-semiconductor heterostructures. In the present investigation, metal/superconductor/semiconductor (Ag/Tl-2223/CdSe) hetero-nanostructures have successfully been fabricated using dc electrodeposition technique and were characterized by X-ray diffraction (XRD), full-width at half-maximum (FWHM) and scanning electron microscopy (SEM) studies. The measurement of junction capacitance as a function of biasing voltage was used for the estimation of junction built-in-potential (V D) and to study the charge distribution in a heterojunction. The Mott-Schottky plots were measured for each junction in dark and under the photo-irradiation. The effect of laser irradiation on C-V characteristics of hetero-nanostructure has been studied.  相似文献   
8.
Despite the burgeoning interest in the various biological functions and consequent therapeutic potential of the vast number of oligosaccharides found in nature on glycoproteins and cell surfaces, the development of combinatorial carbohydrate chemistry has not progressed as rapidly as expected. The reason for this imbalance is rooted in the difficulty of oligosaccharide assembly and analysis that renders synthesis a rather cumbersome endeavor. Parallel approaches that generate series of analogous compounds rather than real libraries have therefore typically been used. Since generally low affinity is obtained for interactions between carbohydrate receptors and modified oligosaccharides designed as mimetics of natural carbohydrate ligands, glycopeptides have been explored as alternative mimics. Glycopeptides have been proven in many cases to be superior ligands with higher affinity for a receptor than the natural carbohydrate ligand. High-affinity glycopeptide ligands have been found for several types of receptors including the E-, P-, and L-selectins, toxins, glycohydrolases, bacterial adhesins, and the mannose-6-phosphate receptor. Furthermore, the assembly of glycopeptides is considerably more facile than that of oligosaccharides and the process can be adapted to combinatorial synthesis with either glycosylated amino acid building blocks or by direct glycosylation of peptide templates. The application of the split and combine approach using ladder synthesis has allowed the generation of very large numbers of compounds which could be analyzed and screened for binding of receptors on solid phase. This powerful technique can be used generally for the identification and analysis of the complex interaction between the carbohydrates and their receptors.  相似文献   
9.
Stathmin is a ubiquitous cytosolic phosphoprotein participating in the relay and integration of diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation, and activities. It is phosphorylated in response to diverse extracellular signals including hormones and growth factors, and it is highly expressed during development and in diverse tumoral cells and tissues. Stathmin interacts with tubulin and other potential protein partners such as BiP, KIS, CC1 and CC2/tsg101. In our present search for further functional partners of stathmin, we identified proteins in the Hsp70 family, and in particular Hsc70, as interacting with stathmin in vitro. Hsc70 is among the proteins coimmunoprecipitated with stathmin, and it is the main protein retained specifically on stathmin-Sepharose beads identified by one- and two-dimensional electrophoresis and immunoblots. Bovine serum albumin (BSA)-Sepharose did not bind Hsc70, and anti-stathmin antisera specifically inhibited the interaction of Hsc70 with stathmin-Sepharose. The binding of Hsc70 to stathmin is dependent on the phosphorylation status of stathmin, as it did not occur with a "pseudophosphorylated" mutant form of stathmin. This interaction is further dependent on the ATP status of Hsc70. It was inhibited in the presence of ATP-Mg++ but not in the presence of ATP-Mg++ and ethylenediaminetetraacetic acid (EDTA) or of ADP. Our results suggest that the interaction of stathmin with Hsc70 is specific in both proteins and most likely biologically relevant in the context of their functional implication in the control of numerous intracellular signaling and regulatory pathways, and hence of normal cell growth and differentiation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号