首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   16篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2001年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.

Liquid scintillation spectrometry is widely used for the analysis of alpha and beta emitting radionuclides. Robust calibration of liquid scintillation (LS) spectrometers is fundamental to accurate LS measurement but at the same time is time consuming and costly, particularly if a wide range of radionuclides are analysed by the laboratory. The frequency of the calibration varies in different laboratories and is based on many practical and operational factors. This work summarizes the observations regarding variations in 1220 Quantulus spectrometers efficiency calibrations performed annually using various radionuclides: 3H 63Ni, 55Fe, 36Cl, 45Ca, 147Pm, 241Pu, 99Tc for a period of 9 years and discusses the implication to calibration frequency.

  相似文献   
2.
A rapid and effective preparative procedure has been evaluated for the accurate determination of low-energy (40–200 keV) gamma-emitting radionuclides (210Pb, 234Th, 226Ra, 235U) in uranium ores and uranium ore concentrates (UOCs) using high-resolution gamma ray spectrometry. The measurement of low-energy gamma photons is complicated in heterogeneous samples containing high-density mineral phases and in such situations activity concentrations will be underestimated. This is because attenuation corrections, calculated based on sample mean density, do not properly correct where dense grains are dispersed within a less dense matrix (analogous to a nugget effect). The current method overcomes these problems using a lithium tetraborate fusion that readily dissolves all components including high-density, self-attenuating minerals/compounds. This is the ideal method for dissolving complex, non-volatile components in soils, rocks, mineral concentrates, and other materials where density reduction is required. Lithium borate fusion avoids the need for theoretical efficiency corrections or measurement of matrix matched calibration standards. The resulting homogeneous quenched glass produced can be quickly dissolved in nitric acid producing low-density solutions that can be counted by gamma spectrometry. The effectiveness of the technique is demonstrated using uranium-bearing Certified Reference Materials and provides accurate activity concentration determinations compared to the underestimated activity concentrations derived from direct measurements of a bulk sample. The procedure offers an effective solution for initial nuclear forensic studies where complex refractory minerals or matrices exist. It is also significantly faster, safer and simpler than alternative approaches.  相似文献   
3.
Accurate and efficient measurement of the oxygen isotope composition of carbonates (delta(C) (18)O) based on the mass spectrometric analysis of CO(2) produced by reacting carbonate samples with H(3)PO(4) is compromised by: (1) uncertainties associated with fractionation factors (alpha(CO)(2)C) used to correct measured oxygen isotope values of CO(2)(delta(CO(2)(18)O) to delta(C) (18)O; and (2) the slow reaction rates of many carbonates of geological and environmental interest with H(3)PO(4). In contrast, determination of delta(C) (18)O from analysis of CO produced by high-temperature (>1400 degrees C) pyrolytic reduction, using an elemental analyser coupled to continuous-flow isotope-ratio mass spectrometry (TC/EA CF-IRMS), offers a potentially efficient alternative that measures the isotopic composition of total carbonate oxygen and should, therefore, theoretically be free of fractionation effects. The utility of the TC/EA CF-IRMS technique was tested by analysis of carbonates in the calcite-dolomite-magnesite solid-solution and comparing the results with delta(C) (18)O measured by conventional thermal decomposition/fluorination (TDF) on the same materials. Initial results show that CO yields are dependent on both the chemical composition of the carbonate and the specific pyrolysis conditions. Low gas yields (<100% of predicted yield) are associated with positive (>+0.2 per thousand) deviations in delta(C(TC/EA) (18)O compared with delta(C(TDF) (18)O. At a pyrolysis temperature of 1420 degrees C the difference between delta(C) (18)O measured by TC/EA CF-IRMS and TDF (Delta(C(TC/EA,TDF) (18)O) was found to be negatively correlated with gas yield (r = -0.785) and this suggests that delta(C) (18)O values (with an estimated combined standard uncertainty of +/-0.38 per thousand) could be derived by applying a yield-dependent correction. Increasing the pyrolysis temperature to 1500 degrees C also resulted in a statistically significant correlation with gas yield (r = -0.601), indicating that delta(C) (18)O values (with an estimated uncertainty of +/-0.43 per thousand) could again be corrected using a yield-dependent procedure. Despite significant uncertainty associated with TC/EA CF-IRMS analysis, the magnitude of the uncertainty is similar to that associated with the application of poorly defined values of alpha(CO)(2), (C) used to derive delta(C) (18)O from delta(CO(2) (18)O measured by the H(3)PO(4) method for most common carbonate phases. Consequently, TC/EA CF-IRMS could provide a rapid alternative for the analysis of these phases without any effective deterioration in relative accuracy, while analytical precision could be improved by increasing the number of replicate analyses for both calibration standards and samples. Although automated gas preparation techniques based on the H(3)PO(4) method (ISOCARB, Kiel device, Gas-Bench systems) have the potential to measure delta(CO)(2) (18)O efficiently for specific, slowly reacting phases (e.g. dolomite), problems associated with poorly defined alpha(CO)(2), (C) remain. The application of the Principle of Identical Treatment is not a solution to the analysis of these phases because it assumes that a single fractionation factor may be defined for each phase within a solid-solution regardless of its precise chemical composition. This assumption has yet to be tested adequately.  相似文献   
4.
Mycobacteria produce a cell-surface glycoconjugate, lipoarabinomannan (LAM), which has been shown to be a potent modulator of the immune response that arises from infection by these organisms. Recently, LAM from the human pathogens Mycobacterium tuberculosis and M. kansasii has been shown to contain an unusual 5-deoxy-5-methylthio-xylofuranose (MTX) residue as well as its corresponding oxidized counterpart, 5-deoxy-5-methylsulfoxy-xylofuranose (MSX). To date, the absolute configuration of these residues and their linkage position to the polysaccharide are unknown, as is their biological role. Through the combined use of chemical synthesis and NMR spectroscopy, we have established that the MTX/MSX residues in these glycoconjugates are of the d-configuration and that they are linked alpha-(1-->4) to a mannopyranose residue in the mannan portion of the glycan. Conformational analysis of the MTX/MSX residue using NMR spectroscopy showed differences in ring conformation and as well as in the rotamer populations about the C-4-C-5 bond, as compared to the parent compound, methyl alpha-d-xylofuranoside. Two of the synthesized disaccharides, 3 and 34, were tested in cytokine induction assays, and neither led to the production of TNF-alpha or IL-12p70. In contrast, both demonstrated modest inhibitory properties when these same cytokines were induced using a preparation of Interferon-gamma and Staphylococcus aureus Cowan strain (SAC/IFN-gamma). These latter observations suggest that this motif may play a role in the immune response arising from mycobacterial infection.  相似文献   
5.
Traditionally in bioassay monitoring, 3H determinations in urine have been performed using either direct counting (with or without sample decolourisation) or distillation whilst 14C has been determined on separate sub-samples following chemical isolation of the carbon from samples. Although these techniques are relatively straightforward they do not permit simultaneous determination of 3H/14C. For 3H, direct counting can be significantly affected by variations in sample composition/colour resulting in varying degrees of sample quench, does not distinguish between aqueous/organically-bound 3H and is limited to small sample sizes. This study describes the use of purpose built multi-tube combustion furnace for the simultaneous extraction and determination of 3H and 14C. The technique is insensitive to sample composition and can be adapted to measure Tritiated water (HTO) and organically bound tritium separately. The development of a multi-tube system with integrated cool-down facility permits rapid throughput of high sample numbers and has been proven effective in decommissioning waste characterisation. In addition, the furnace-based technique is capable of processing larger sample sizes, increasing analytical sensitivity and accuracy of dose assessment.  相似文献   
6.
Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products (135Cs and 137Cs) and activation products (134Cs and 136Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst 137Cs, 134Cs and 136Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived 135Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the 135Cs/137Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products 134Cs and 136Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics.  相似文献   
7.
Journal of Radioanalytical and Nuclear Chemistry - This paper describes an early-stage evaluation of a purpose-designed extraction/detection system that can be deployed by non-specialists either...  相似文献   
8.
N,N,N′,N′-tetra-2-ethylhexyldiglycolamide (T2EHDGA) has been used for the preferential extraction of 90Y from its mixture with 90Sr from HNO3 as well as HCl medium. The separation efficiencies have been found out under varying experimental conditions. The extracted species were determined from T2EHDGA concentration variation experiments carried out at 3 M nitric acid as well as HCl and were found out to be Y(X3)3·3(TEHDGA)(o) for both the extraction systems, where X = NO3 and Cl, respectively. Comparison of the T2EHDGA and TODGA based separation methods is also made. In order to avoid third phase formation, iso-decanol has been used as the modifier in all the studies. The modifier content was optimized to 30% for 4 M HCl and 20% for 6 M HNO3 as the feed aqueous phases. Separation schemes were developed for the separation of carrier free 90Y and the purity was checked by the half-life measurement method.  相似文献   
9.
A rapid and robust procedure is described for the decomposition of Actinide resin permitting the routine application of this resin as a preconcentrator. Although the classical Fe(OH)3 precipitation is effective in scavenging actinides, the need for careful handling to recover the sticky precipitate makes the new method much more attractive. The known difficulty of decomposing Actinide resin, which is required prior to the subsequent separation of adsorbed actinides, is innovatively overcome by using a borate fusion attack. This procedure effectively solves the normally encountered problem by safely and speedily decomposing the resin in minutes rather than hours. The alternative and apparently simpler technique of direct ashing of the Actinide resin is not used since it leads to a residue that is not readily leachable. The new technique has been incorporated into a procedure for the isolation of Pu and U from natural water samples and their subsequent quantification by alpha spectrometry. The efficiency of loading of the elements onto Actinide resin has been tested using both batch and column-based approaches. The integrated method involving Actinide resin preconcentration, borate fusion, anion and UTEVA chromatography and electrodeposition provides limits of detection of 0.001 BqL(-1) and chemical recoveries in excess of 80% from groundwater and seawater samples as large as 5L. Comparative data, presented for the analysis of independently analysed river, borehole and surface run-off waters using both the described procedure and other competing techniques, show very good agreement.  相似文献   
10.
A straightforward and rapid method has been developed for the determination of 241Pu activities. Pu is chemically separated from the sample, purified and electrodeposited to produce a source for alpha spectrometric determination of 238Pu and 239,240Pu. Pu is stripped from the disc with concentrated nitric acid and extracted into tri-octylphosphine oxide (TOPO)/toluene. The organic extract is then mixed directly with commercial liquid scintillation cocktail without any further purification procedures and the sample counted on a Wallac 1220 Quantulus liquid scintillation counter (LSC). 241Pu activity is estimated via the 242Pu yield monitor acquired by alpha spectrometry measurement. Experimental results for the performance testing of a low-level liquid scintillation spectrometer and the data for the evaluation of the method using standard reference materials are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号