首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   29篇
化学   485篇
晶体学   2篇
力学   7篇
数学   21篇
物理学   107篇
  2021年   4篇
  2020年   15篇
  2019年   9篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   23篇
  2013年   28篇
  2012年   22篇
  2011年   46篇
  2010年   22篇
  2009年   7篇
  2008年   39篇
  2007年   34篇
  2006年   39篇
  2005年   32篇
  2004年   30篇
  2003年   22篇
  2002年   27篇
  2001年   29篇
  2000年   10篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   13篇
  1995年   7篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1978年   5篇
  1972年   3篇
  1970年   3篇
  1969年   2篇
  1968年   7篇
  1967年   3篇
  1966年   8篇
  1925年   2篇
  1915年   4篇
  1902年   2篇
  1897年   2篇
  1893年   2篇
排序方式: 共有622条查询结果,搜索用时 31 毫秒
1.
The ability to prepare high Tg low shrinkage thiol–ene materials is attractive for applications such as coatings and dental restoratives. However, thiol and nonacrylated vinyl materials typically consist of a flexible backbone, limiting the utility of these polymers. Hence, it is of importance to synthesize and investigate thiol and vinyl materials of varying backbone chemistry and stiffness. Here, we investigate the effect of backbone chemistry and functionality of norbornene resins on polymerization kinetics and glass transition temperature (Tg) for several thiol–norbornene materials. Results indicate that Tgs as high as 94 °C are achievable in thiol–norbornene resins of appropriately controlled chemistry. Furthermore, both the backbone chemistry and the norbornene moiety are important factors in the development of high Tg materials. In particular, as much as a 70 °C increase in Tg was observed in a norbornene–thiol specimen when compared with a sample prepared using allyl ether monomer of analogous backbone chemistry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5686–5696, 2007  相似文献   
2.
The overall effects of oxygen on thiol–acrylate photopolymerizations were characterized. Specially, the choice of thiol monomer chemistry, functionality, and concentration on the extent of oxygen inhibition were considered. As thiol concentration was increased, the degree of oxygen inhibition was greatly reduced because of chain transfer from the peroxy radical to the thiol. When comparing the copolymerization of 1,6‐hexanediol diacrylate with the alkane‐based thiol (1,6‐hexane dithiol) to the copolymerization with the propionate thiol (glycol dimercaptopropionate), it was found that the propionate system was much more reactive and polymerized to a greater extent in the presence of oxygen. In addition, the functionality was considered where the glycol dimercaptopropionate was compared to a tetrafunctional propionate of similar chemistry (pentaerythritol tetrakis(mercaptopropionate)). Given the same thiol concentration, the higher functionality thiol imparted a faster polymerization rate, due to the increased polymer system viscosity, which limited oxygen diffusion and decreased the extent of overall oxygen inhibition. Thus, preliminary insight is provided into how thiol monomer choice affects the extent of oxygen inhibition in thiol–acrylate photopolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2007–2014, 2006  相似文献   
3.
4.
The reaction of Cp2*UCl2 with HNSPh2 produces Cp2*UCl2(HNSPh2), which is the first structurally characterized complex of a sulfilimine. The hydrolysis of Cp2*UCl2(HNSPh2) with HNSPh2 · H2O yields a tetrauranium cluster whose heavy atom structure has been determined by x-ray diffraction and which is formulated as a UIV/UV complex: [Cp*(Cl)(HNSPh2)U(μ3-O)(μ2-O)2U(Cl)(HNSPh2)2]2.  相似文献   
5.
Molecular dynamics simulations of double-helical DNA oligomers have been performed to investigate differences in the structure, dynamics, and hydration of F-F and T-T mispairs. Hexamers containing F-F pairs were found to be more dynamic, especially in the region of the mispair itself. This dynamic variability derives from greater flexibility of F-F pairs. The T-T mispairs, on the other hand, were found to be comparatively tightly bound as wobble pairs. The major and minor groove edges of the T-T pairs were observed to be solvated at exposed carbonyl positions by at least one water molecule, while F-F pairs lacked solvating waters. Stacking interactions were nearly identical for T-T and F-F pairs, leading to similar average structures, even though F stacking was more dynamically variable. Solvation differences between F-F and T-T therefore support the steric exclusion model for nucleotide incorporation in DNA replication. Large differences in the orientation of minor groove functional groups, in addition to differences in solvation, further rationalize why F bases present during DNA extension events induce stalls. Two novel nucleotides are proposed to further elucidate minor groove interactions of DNA with polymerase molecules.Electronic Supplementary Material This Material consists of equilibration protocol, plots of center-of-mass stacking, water radial distribution functions, helical parameter dynamics, and dynamics data for a control AT sequence. Supplementary material is available in the online version of this article at Contribution to the Jacopo Tomasi Honorary Issue  相似文献   
6.
DNA polymerase selectivity often varies significantly depending on the DNA polymerase. The origin of this varying error propensity is elusive. It is assumed that DNA polymerases form nucleotide binding pockets that differ in properties such as shape and tightness. We tested this prediction and studied HIV-1 RT by employment of size-augmented nucleotides and site-directed mutagenesis of the enzyme. New valuable insights into the mechanism of DNA polymerase fidelity were obtained. The presented study provides experimental evidence that variations of steric constraints within the nucleotide binding pocket of at least two DNA polymerases cause variations in nucleotide incorporation selectivity. Thus, our results support the concept of active site tightness as a causative in differential fidelity among DNA polymerases.  相似文献   
7.
Anisotropic polysulfone membranes were prepared with carboxypeptidase G1 embedded in the polymer structure. The enzymatically active flat and hollow-fiber membranes were obtained by precipitating the polymer from solution in an organic mixture in which an aqueous solution of the enzyme had been dispersed. The process has been found to be particularly suitable for the immobilization of enzymes in anisotropic hollow fibers that exhibited no detectable enzyme leakage upon perfusion. The pH profiles measured with the enzyme in free solution and in the embedded form were similar. Kinetic parameters of multitubular enzyme reactors were investigated by measuring the rate of hydrolysis of glutamate from folic acid or methotrexate at different flow rates and substrate concentrations. The relatively slow mass transfer in such reactors was found to affect strongly the observed kinetics. The results of in vitro experiments with 5000 fiber reactors suggest that hollow fiber cartridges prepared with such membranes have clinical potential for the extracorporeal removal of methotrexate from blood.  相似文献   
8.
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.  相似文献   
9.
A chromatography column on a chip was fabricated by immobilizing reversed-phase stationary phase particles (5 microm, C4) using sol-gel technology. Channels were fabricated in quartz using photolithography and wet etching. Localization of the stationary phase was achieved by immobilizing the stationary phase at the desired location in the separation channel prior to bonding of the cover plate. Cross channel design was employed for gated injection. An optical fiber setup was developed for carrying out on-chip UV absorbance detection. The effective optical path length was theoretically determined for the trapezoidal shaped channel and the result was shown to match closely with the experimentally determined value. The effect of applied voltage on velocity was evaluated using thiourea as an unretained marker. Separation performance of the stationary phase was demonstrated by separation of three peptides (Trp-Ala, Leu-Trp and Trp-Trp) under isocratic chromatographic conditions.  相似文献   
10.
Nonpolar paramagnetic additives mixed into the aqueous serum of colloidal polymer dispersions are absorbed by the polymer particles with a rate that depends on the diffusion coefficient of the additive in the polymer. The absorption leads to an immobilization of the additive which can be detected in the electron paramagnetic resonance spectrum. By fitting the time dependence of the immobilized fraction to the appropriate diffusion model, it is possible to determine the diffusion coefficient of the additive in the polymer if the polymer particles are approximately uniform in size. This opens up a new way to determine diffusion coefficients in the range between 10-14 and 10-17 cm2s-1, as are expected for low-molecular-weight additives in polymers below their glass-transition temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号