首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
化学   78篇
数学   5篇
物理学   10篇
  2023年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   9篇
  2011年   8篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1998年   1篇
  1972年   2篇
排序方式: 共有93条查询结果,搜索用时 197 毫秒
1.
A simple and versatile light-based strategy to grow low-dimensional gold superstructures is presented; prolonged UV-irradiation of TiO2 nanorod-stabilized Au nanoparticles in organic media promotes the progressive formation of distinctive chainlike metal assemblies, namely segments of a few gold particles, 2D or quasi-1D large structures composed of interlacing lines of hundreds of metal units over areas of about 500 nm2.  相似文献   
2.
Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2(sq)](PF6) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.  相似文献   
3.
4.
Derivatives of 1,2-dithienylethene (DTE) have superb photochromic properties due to an efficient reversible photocyclization reaction of their hexatriene structure and, thus, have application potential in materials for optoelectronics and (multi-responsive) molecular switches. Transition-metal complexes bearing switchable DTE motifs commonly incorporate their coordination site rather distant from the hexatriene system. In this work the redox active ligand 1,2-bis(2,5-dimethylthiophen-3-yl)ethane-1,2-dione is described, which reacts with [V(TMEDA)2Cl2] to give a rare non-oxido vanadium(IV) species 3(M,M/P,P) . This blue complex has two bidentate en-diolato ligands which chelate the VIV center and give rise to two five-membered metallacycles with the adjacent hexatriene DTE backbone bearing axial chirality. Upon irradiation with UVA light or prolonged heating in solution, the blue compound 3(M,M/P,P) converts into the purple atropisomer 4(para,M/para,P) . Both complexes were isolated and structurally characterized by single-crystal X-ray diffraction analysis (using lab source and synchrotron radiation). The antiparallel configuration (M or P helicity) present in both 3(M,M/P,P) and 4(para,M/para,P) is a prerequisite for (reversible) 6π cyclization reactions. A CW EPR spectroscopic study reveals the metalloradical character for 3(M,M/P,P) and 4(para,M/para,P) and indicates dynamic reversible cyclization of the DTE backbone in complex 3(M,M/P,P) at ambient temperature in solution.  相似文献   
5.
We present a combined Monte‐Carlo/molecular dynamics study of a Cu0.327Ni0.673 alloy system. On the basis of nearest‐neighbor coordination number analyses atomic clustering and phase segregation is explored. Along this line, free energy profiles are calculated and separated into entropic and energetic contributions. The competition of both terms was found in accordance to the experimental phase diagrams (phase separation of the solid solution below about 600 Kelvin). Two independent simulation runs were performed. At 1000 Kelvin the observed configurations correspond to solid solutions exhibiting a weak tendency to cluster atoms of identical species. At room temperature the energetic favoring of atomic separation is clearly dominant and leads to the formation of Ni‐rich and Cu‐rich domains. The latter are separated by interfacial regions whose width ranges from 0.5 to 1 nanometers.  相似文献   
6.
Reaction of iron(II) thiocyanate with 4,4‐bipyridine (bipy) in methanol leads to the formation of three new solvates of different composition depending on the reaction conditions: At room temperature two new ligand‐rich 1:2 (1:2 = ratio between metal and N‐donor ligand) polymorphic forms [Fe(NCS)2(bipy)2 · 2MeOH]n ( 1I ) and [Fe(NCS)2(bipy)(MeOH)2 · (bipy)]n ( 1II ) are obtained, whereas solvothermal conditions leads to the formation of the new ligand‐deficient 1:1 compound [{Fe(NCS)2(bipy)(MeOH)}2]n ( 2 ). All crystal structures were determined by X‐ray single crystal structure analysis. In the crystal structure of modification 1I the metal atoms are coordinated by four bridging bipy ligands, which connect them into layers. The methanol molecules occupy voids in the structure. Compared to 1I in modification 1II the crystal structure contains of linear Fe–bipy–Fe chains, which are further connected by hydrogen bonds between coordinating MeOH and noncoordinated bipy ligands into layers. The ligand‐deficient 1:1 compound 2 shows a completely different coordination topology with linear Fe–bipy–Fe chains, which are connected by coordinating methanol molecules into double‐chains. In all compounds the thiocyanato anions are terminal N‐bonded to the metal atoms. Investigation of the thermal behavior of compound 1I shows a two‐step decomposition, in which ligand‐deficient intermediates are formed. Magnetic measurements on 1I reveal Curie–Weiss paramagnetism with increasing antiferromagnetic interactions on cooling.  相似文献   
7.
8.
A colloidal crystal-splitting growth regime has been accessed, in which TiO(2) nanocrystals, selectively trapped in the metastable anatase phase, can evolve to anisotropic shapes with tunable hyperbranched topologies over a broad size interval. The synthetic strategy relies on a nonaqueous sol-gel route involving programmed activation of aminolysis and pyrolysis of titanium carboxylate complexes in hot surfactant media via a simple multi-injection reactant delivery technique. Detailed investigations indicate that the branched objects initially formed upon the aminolysis reaction possess a strained monocrystalline skeleton, while their corresponding larger derivatives grown in the subsequent pyrolysis stage accommodate additional arms crystallographically decoupled from the lattice underneath. The complex evolution of the nanoarchitectures is rationalized within the frame of complementary mechanistic arguments. Thermodynamic pathways, determined by the shape-directing effect of the anatase structure and free-energy changes accompanying branching and anisotropic development, are considered to interplay with kinetic processes, related to diffusion-limited, spatially inhomogeneous monomer fluxes, lattice symmetry breaking at transient Ti(5)O(5) domains, and surfactant-induced stabilization. Finally, as a proof of functionality, the fabrication of dye-sensitized solar cells based on thin-film photoelectrodes that incorporate networked branched nanocrystals with intact crystal structure and geometric features is demonstrated. An energy conversion efficiency of 6.2% has been achieved with standard device configuration, which significantly overcomes the best performance ever approached with previously documented prototypes of split TiO(2) nanostructures. Analysis of the relevant photovoltaic parameters reveals that the utilized branched building blocks indeed offer light-harvesting and charge-collecting properties that can overwhelm detrimental electron losses due to recombination and trapping events.  相似文献   
9.
The most efficient and commonly used electrochemiluminescence (ECL) emitters are luminol, [Ru(bpy)3]2+, and derivatives thereof. Luminol stands out due to its low excitation potential, but applications are limited by its insolubility under physiological conditions. The water‐soluble m‐carboxy luminol was synthesized in 15 % yield and exhibited high solubility under physiological conditions and afforded a four‐fold ECL signal increase (vs. luminol). Entrapment in DNA‐tagged liposomes enabled a DNA assay with a detection limit of 3.2 pmol L?1, which is 150 times lower than the corresponding fluorescence approach. This remarkable sensitivity gain and the low excitation potential establish m‐carboxy luminol as a superior ECL probe with direct relevance to chemiluminescence and enzymatic bioanalytical approaches.  相似文献   
10.
Synthesis and Metalation of the Diaminosiloxane O(SiiPr2NH2)2 The 1,3‐diaminoldisiloxane O(SiiPr2NH2)2 ( 1 ) was obtained from the reaction of O(SiiPr2Cl)2 with NH3. The reactions of 1 with AlEt3 or GaEt3 produced the compounds [O{SiiPr2N(H)MEt2}{SiiPr2NMEt}]2 ( 2 : M = Al; 3 : M = Ga). The crystal structures of 2 and 3 were determined by single crystal X‐ray diffraction, showing a polycyclic M4N4Si4O2 core structure of these molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号