首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学   33篇
数学   1篇
物理学   3篇
  2016年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
A new set of luminescent platinum(II) diimine complexes has been synthesized and characterized. The anionic ligands in these complexes are arylacetylides. The complexes are brightly emissive in fluid solution with relative emission quantum yields phiem ranging from 3 x 10(-3) to 10(-1). Two series of complexes have been investigated. The first has the formula Pt(Rphen)(C...CC6H5)2 where Rphen is 1,10-phenanthroline substituted in the 5-position with R = H, Me, Cl, Br, NO2, or C...CC6H5, while the second has the formula Pt(dbbpy)(C=CC6H4X)2 where dbbpy = 4,4'-di(tert-butyl)bipyridine and X = H, Me, F, or NO2. From NMR, IR, and electronic spectroscopies, all of the complexes are assigned a square planar coordination geometry with cis-alkynyl ligands. The crystal structure of Pt(phen)(Ce-CC6H4CH3)2 confirms this assignment. All of the complexes exhibit an absorption band at ca. 400 nm that corresponds to a Pt d-->pi*diimine charge-transfer transition. The variation of lambdamax for this band with substituent variation supports this assignment. From similar changes in the energy of the solution luminescence as a function of substituents R and X, the emissive excited state is also of MLCT origin, but with spin-forbidden character on the basis of excited-state lifetime measurements (0.01-5.6 micros). The complexes undergo electron-transfer quenching, showing good Stern-Volmer behavior using 10-methylphenothiazine and N,N,N',N'-tetramethylbenzidine as reductive quenchers. Excited-state reduction potentials are estimated on the basis of a simple thermochemical analysis. Crystal data for Pt(phen)(C...CC6H4CH3)2: monoclinic, space group C2/c, a = 19.0961(1) A, b = 10.4498(1) A, c = 11.8124(2) A, beta = 108.413(1) degrees, V = 2236.49 A3, number of reflections 1614, number of variables 150, R1 = 0.0163, wR2 (I > 2sigma) = 0.0410.  相似文献   
2.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   
3.
This paper summarizes a new method for preconcentration of rusty metal samples using DIPEX® Actinide Resin from Eichrom Technologies prior to analysis for trace environmental actinides. This method allows for preconcentration of actinides for which the existing lanthanum coprecipitation method is ill-suited. The new and existing methods were shown to provide comparable results for plutonium analysis. Performance was compared for both lab-prepared controls and environmental samples. Using actinide resin, a mean 238Pu activity of 46 ± 13 % mBq (2σ) was measured, while 238Pu activity of 40 ± 6 % mBq (2σ) was measured using lanthanum coprecipitation. Small quantities of 239+240Pu, likely attributable to fallout, were also detected.  相似文献   
4.
Square-planar cations of the orange form of [Pt(Me2bzimpy)Cl](PF6) x DMF [Me2bzimpy = 2,6-bis(N-methylbenzimidazol-2-yl)pyridine] stack along the b axis in a head-to-tail arrangement with short interplanar spacings (3.35 and 3.39 A). Long intermolecular Pt...Pt contacts [4.336(2) and 4.565(2) A] and comparatively short Me2bzimpy...Me2bzimpy distances are consistent with spectroscopic measurements for orange salts of Pt(Me2bzimpy)Cl+. The DMF solvent molecules line channels parallel to c, which may provide a conduit for vapor absorption. The crystals are vapochromic, changing from orange to violet upon exposure to acetonitrile vapor. The changes in spectroscopic properties accompanying vapor absorption are consistent with changes in intermolecular interactions between complexes.  相似文献   
5.
6.
The direct intercalation of a pyrazolate-bridged platinum(II) bipyridyl dimer ([{Pt(dmbpy)(μ-pz)}(2)](2+); dmbpy = 4,4'-dimethyl-2,2'-bipyridine, pz(-) = pyrazolate) within a zirconium phosphate (ZrP) framework has been accomplished. The physical and spectroscopic properties of [{Pt(dmbpy)(μ-pz)}(2)](2+) intercalated in ZrP were investigated by X-ray powder diffraction and X-ray photoelectron, infrared, absorption, and luminescence spectroscopies. Zirconium phosphate layers have a special microenvironment that is capable of supporting a variety of platinum oxidation states. Diffuse reflectance spectra from powders of the blue-gray intercalated materials show the formation of a low-energy band at 600 nm that is not present in the platinum dimer salt. The nonintercalated complex is nonemissive in room-temperature fluid solution, but gives rise to intense blue-green emission in a 4:1 ethanol/methanol 77 K frozen glassy solution. Powders and colloidal suspensions of [{Pt(dmbpy)(μ-pz)}(2)](2+)-exchanged ZrP materials exhibit intense emissions at room-temperature.  相似文献   
7.
A series of platinum(II) complexes with the formulas Pt(diimine)(pip(2)NCNH(2))(L)(2+) [pip(2)NCNH(2)(+) = 2,6-bis(piperidiniummethyl)phenyl cation; L = Cl, Br, I, NCS, OCN, and NO(2); diimine = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO(2)phen), and 5,5'-ditrifluoromethyl-2,2'-bipyridine (dtfmbpy)] were prepared by the treatment of Pt(pip(2)NCN)Cl with a silver(I) salt followed by the addition of the diimine and halide/pseudohalide under acidic conditions. Crystallographic data as well as (1)H NMR spectra establish that the metal center is bonded to a bidentate phenanthroline and a monodentate halide/pseudohalide. The pip(2)NCNH(2)(+) ligand with protonated piperidyl groups is monodentate and bonded to the platinum through the phenyl ring. Structural and spectroscopic data indicate that the halide/pseudohalide group (L(-)) and the metal center in Pt(phen)(pip(2)NCNH(2))(L)(2+) behave as Br?nsted bases, forming intramolecular NH···L/NH···Pt interactions involving the piperidinium groups. A close examination of the 10 structures reported here reveals linear correlations between N-H···Pt/L angles and H···Pt/L distances. In most cases, the N-H bond is directed toward the Pt-L bond, thereby giving the appearance that the proton bridges the Pt and L groups. In contrast to observations for Pt(tpy)(pip(2)NCN)(+) (tpy = 2,2';6',2"-terpyridine), the electrochemical oxidation of deprotonated adducts, Pt(diimine)(L)(pip(2)NCN), is chemically and electrochemically irreversible.  相似文献   
8.
Triflate salts of three (Pt(pip2NCN))2(mu-L)2+ (pip2NCNH = 1,3-bis(piperidylmethyl)benzene) dimers bridged by a series of nitrogen-donor ligands (L = pyrazine (pyz), 1,2-bis(4-pyridyl)ethane (bpa), trans-1,2-bis(4-pyridyl)ethylene (bpe)) are reported. These complexes have been fully characterized by 1H NMR spectroscopy and elemental analysis. The X-ray crystal structures of [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2 and [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2 are reported. [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2: triclinic, P, a = 12.5240(5) A, b = 14.1570(6) A, c = 14.2928(6) A, alpha = 106.458(1) degrees , beta = 92.527(1) degrees , gamma = 106.880(1) degrees , V = 2303.46(17) A(3), Z = 2. [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2: monoclinic, P21/c, a = 10.1288(6) A, b = 16.3346(9) A, c = 17.4764(10) A, beta = 90.882(2) degrees , V = 2891.1(3) A3, Z = 2. These structures and solution measurements provide evidence for the strong trans-directing properties of the pip2NCN- ligand. The electronic structures of these complexes and those of the 4,4'-bipyridine (bpy) dimer, (Pt(pip2NCN))2(mu-bpy)2+, also have been investigated by UV-visible absorption and emission spectroscopies, as well as cyclic voltammetry. The accumulated data indicate that variations in the bridging ligands provide remarkable control over the electronic structures and photophysics of these complexes. Notably, the bpa dimer exhibits a broad, low-energy emission from a metal-centered 3LF excited state, whereas the bpe and bpy dimers exhibit structured emission from a lowest pyridyl-centered 3(pi-pi*) excited state. In contrast, the pyz dimer exhibits remarkably intense yellow emission tentatively assigned to a triplet metal-to-ligand charge-transfer excited state.  相似文献   
9.
The nuclear magnetic transverse relaxation time of oxygen-17 in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 was measured over a range of temperatures, pH, and S(IV) concentrations at an ionic strength of 1.0 m. From these data the rate law for oxygen exchange between bisulfite ion and water was determined and found to be consistent with oxygen exchange occurring via the reactions SHO(3)(-) + H(+) SO(2) + H(2)O, SO(3)H(-) + SHO(3-) SO(3)(2-) + SO(2) + H(2)O, and SO(3)H(-) + SHO(3-) S(2)O(5)(2-) + H(2)O, where the symbol SHO(3-) refers to both isomeric forms of bisulfite ion, one in which the hydrogen is bonded to the sulfur (denoted HSO(3-)) and another in which the hydrogen is bonded to an oxygen atom (denoted SO(3)H(-)). The SO(3)H(-) isomer exchanges oxygen atoms with water much more rapidly than does the HSO(3-) isomer. The value of k(-1) was determined and is in essential agreement with the results of a previous determination by relaxation measurements. The value of k(16a) + k(16b) was also found, and k(16b) is at least as large as k(16a). The rate and mechanism of oxygen exchange between the two bisulfite ion environments were studied by analyzing the broadening of the HSO(3-) resonance. Oxygen exchange occurs through isomerization caused by proton transfers.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号