首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   1篇
  国内免费   1篇
化学   45篇
晶体学   1篇
力学   1篇
数学   32篇
物理学   22篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   4篇
  1968年   3篇
  1967年   1篇
  1963年   1篇
  1931年   1篇
  1910年   2篇
  1909年   8篇
  1908年   2篇
  1906年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
2.
We used luminescent CdSe-ZnS core-shell quantum dots (QDs) as energy donors in fluorescent resonance energy transfer (FRET) assays. Engineered maltose binding protein (MBP) appended with an oligohistidine tail and labeled with an acceptor dye (Cy3) was immobilized on the nanocrystals via a noncovalent self-assembly scheme. This configuration allowed accurate control of the donor-acceptor separation distance to a range smaller than 100 A and provided a good model system to explore FRET phenomena in QD-protein-dye conjugates. This QD-MBP conjugate presents two advantages: (1) it permits one to tune the degree of spectral overlap between donor and acceptor and (2) provides a unique configuration where a single donor can interact with several acceptors simultaneously. The FRET signal was measured for these complexes as a function of both degree of spectral overlap and fraction of dye-labeled proteins in the QD conjugate. Data showed that substantial acceptor signals were measured upon conjugate formation, indicating efficient nonradiative exciton transfer between QD donors and dye-labeled protein acceptors. FRET efficiency can be controlled either by tuning the QD photoemission or by adjusting the number of dye-labeled proteins immobilized on the QD center. Results showed a clear dependence of the efficiency on the spectral overlap between the QD donor and dye acceptor. Apparent donor-acceptor distances were determined from efficiency measurements and corresponding F?rster distances, and these results agreed with QD bioconjugate dimensions extracted from structural data and core size variations among QD populations.  相似文献   
3.
F?rster resonance energy transfer (FRET), which involves the nonradiative transfer of excitation energy from an excited donor fluorophore to a proximal ground-state acceptor fluorophore, is a well-characterized photophysical tool. It is very sensitive to nanometer-scale changes in donor-acceptor separation distance and their relative dipole orientations. It has found a wide range of applications in analytical chemistry, protein conformation studies, and biological assays. Luminescent semiconductor nanocrystals (quantum dots, QDs) are inorganic fluorophores with unique optical and spectroscopic properties that could enhance FRET as an analytical tool, due to broad excitation spectra and tunable narrow and symmetric photoemission. Recently, there have been several FRET investigations using luminescent QDs that focused on addressing basic fundamental questions, as well as developing targeted applications with potential use in biology, including sensor design and protein conformation studies. Herein, we provide a critical review of those developments. We discuss some of the basic aspects of FRET applied to QDs as both donors and acceptors, and highlight some of the advantages offered (and limitations encountered) by QDs as energy donors and acceptors compared to conventional dyes. We also review the recent developments made in using QD bioreceptor conjugates to design FRET-based assays.  相似文献   
4.
We assessed the ability of luminescent quantum dots (QDs) to function as energy acceptors in fluorescence resonance energy transfer (FRET) assays, with organic dyes serving as donors. Either AlexaFluor 488 or Cy3 dye was attached to maltose binding protein (MBP) and used with various QD acceptors. Steady-state and time-resolved fluorescence measurements showed no apparent FRET from dye to QD. We attribute these observations to the dominance of a fast radiative decay rate of the donor excitation relative to a slow FRET decay rate. This is due to the long exciton lifetime of the acceptor compared to that of the dye, combined with substantial QD direct excitation.  相似文献   
5.

Background  

Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.  相似文献   
6.
7.
We construct positive and sign changing multipeak solutions to the pure critical exponent problem in a bounded domain with a shrinking hole, having a peak which concentrates at some point inside the shrinking hole (i.e. outside the domain) and one or more peaks which concentrate at interior points of the domain. These are, to our knowledge, the first multipeak solutions in a domain with a single small hole.  相似文献   
8.
9.
This article reviews some of the applications of physics to the solution of archaeological problems. The use of magnetic, resistivity and electromagnetic surveying techniques for the location of buried features is described. Various methods of age determination are outlined while the problems associated with radiocarbon dating of organic material and thermoluminescent dating of pottery are discussed in detail. The techniques, including petrological examination, chemical analysis and isotopic analysis, employed in the physical examination of archaeological artefacts are described. Examples of the application of these techniques in establishing the source of the raw materials used in pottery, metal and stone implements and in elucidating the techniques of manufacture of pottery and metal objects are also given.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号