首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2013年   2篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 187 毫秒
1
1.
In this paper, a modified nearest-neighbor regression method (kNN) is proposed to model a process with incomplete information of the measurements. This technique is based on the variation of the coefficients used to weight the distances of the instances. The case study selected for testing this algorithm was the photocatalytic degradation of Reactive Red 184 (RR184), a dye belonging to the group of azo compounds, which is widely used in manufacturing paint paper, leather and fabrics. The process is conducted with TiO2 as catalyst (an inexpensive semiconductor material, completely inert chemically and biologically), in the presence of H2O2 (with the role of increasing the rate of photo-oxidation), at different pH values. The final concentration of RR184 is predicted accurately with the modified kNN regression method developed in this article. A comparison with other machine learning methods (sequential minimal optimization regression, decision table, reduced error pruning tree, M5 pruned model tree) proves the superiority and efficiency of the proposed algorithm, not only for its results, but for its simplicity and flexibility in manipulating incomplete experimental data.   相似文献   
2.
Cysteamine core polyamidoamine G-4 dendron branched with β-cyclodextrins was chemisorbed on the surface of Au electrodes and further coated with Pt nanoparticles. Adamantane-modified glucose oxidase was subsequently immobilized on the nanostructured electrode surface by supramolecular association. This enzyme electrode was used to construct a reagentless amperometric biosensor for glucose, making use of the electrochemical oxidation of H2O2 generated in the enzyme reaction. The amperometric response of the biosensor was rapid (6 s) and a linear function of glucose concentration between 5 and 705 μmol?L?1. The biosensor had a low detection limit of 2.0 μmol?L?1, sensitivity of 197 mA?mol?1?L?cm?2, and retained 94 % of its initial response after storage for nine days at 4 °C.  相似文献   
3.
An optimization methodology based on neural networks and genetic algorithms was developed and used to optimize a real world process — an electro-coagulation process involving three pollutants at different concentrations: kaolin (250–1000 mg L?1), Eriochrome Black T solutions (50–200 mg L?1), and oil/water emulsion (1500–4500 mg L?1). Feed-forward neural networks using heterogeneous combination of transfer functions were developed, leading to good results in the validation stage (relative error about 8%). The parameters of the process (concentration of pollutant, time, pH0, conductivity and current density) were optimized handling the genetic algorithm parameters, in order to obtain a maximum removal efficiency for each pollutant. Therefore, the optimization methodology combines neural networks as modeling tools with genetic algorithms as solving method. Validation of the optimization results using supplementary experimental data reveals errors under 11%.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号