首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
化学   43篇
力学   3篇
数学   2篇
物理学   13篇
  2023年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1994年   4篇
  1972年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
[reaction: see text] A fluorine-labeled selenide linker for installing terminal isolated olefins has been synthesized in high overall yield. The resin-bound linker could be glycosylated both with glycosyl trichloroacetimidates and glycosyl fluorides. The linker did not decompose after oxidation with tBuOOH but underwent beta-elimination when it was subjected to heat. This allowed the released n-pentenyl glycoside 15 to be isolated in excellent yield and purity after filtration.  相似文献   
2.
A data-processing technique is proposed for use with conventional frequency-chirped absorption spectroscopy to ensure accurate mapping of spectral features into time-domain signatures with arbitrarily fast readout chirp rates. This technique recovers the spectrum from a signal that is distorted owing to the fast chirp rate and therefore facilitates fast measurement of the spectral features over a broad spectral range with high resolution. Both numerical simulations and experimental results are presented.  相似文献   
3.
4.
The objective of this study was to develop a novel analytical chemistry method, comprised of a coupled high-performance liquid chromatography–gas chromatography/mass spectrometry system (LC–GC/MS) with low detection limits and high selectivity, for the identification and determination of oxygenated polycyclic aromatic hydrocarbons (OPAHs) and polycyclic aromatic hydrocarbons (PAHs) in urban air and diesel particulate matter. The linear range of the four OPAHs, which include 9,10-anthraquinone, 4H-cyclopenta[def]phenanthrene-4-one, benzanthrone, and 7,12-benz[a]anthraquinone, was 0.7 pg–43.3 ng with limits of detection (LODs) and limits of quantification (LOQs) on the order of 0.2–0.8 and 0.7–1.3 pg, respectively. The LODs in this study are generally lower than values reported in the literature, which can be explained by using large-volume injection. The recoveries of the OPAHs spiked onto glass fiber filters using two different pressurized liquid extraction (PLE) methods were in the ranges of 84–107 and 67–110 %, respectively. The analytical protocols were validated using the following National Institute of Standards and Technology standard reference materials: SRM 1649a (Urban Dust), SRM 1650b (Diesel Particulate Matter), and SRM 2975 (Diesel Particulate Matter, Industrial Forklift). The measured mass fractions of the OPAHs in the standard reference materials (SRMs) in this present study are higher than the values from the literature, except for benzanthrone in SRM 1649a (Urban Dust). In addition to the OPAHs, 44 PAHs could be detected and quantified from the same particulate extract used in this protocol. Using data from the literature and applying a two-sided t test at the 5 % level using Bonferroni correction, significant differences were found between the tested PLE methods for individual PAHs. However, the measured mass fractions of the PAHs were comparable, similar to, or higher than those previously reported in the literature.  相似文献   
5.
The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the accurate determination of PAHs with high molecular masses in this standard reference material and that the optimization of extraction conditions is essential to avoid underestimation of the PAH concentrations. The requirement is especially relevant to the human carcinogen benzo[a]pyrene, which is commonly used as an indicator of the carcinogenic risk presented by PAH mixtures.  相似文献   
6.
7.
A method has been developed for analysis of the highly potent polycyclic aromatic hydrocarbon (PAH) carcinogens dibenzo(a,l)pyrene, dibenzo(a,h)pyrene, and dibenzo(a,i)pyrene (molecular weight 302) present in small amounts in diesel and air particulate material. The method can also be used for analysis of the PAH benzo(a)pyrene, coronene, and perylene, for which reference and certified values are available for the standard reference materials used for validation of the method—SRM 1649a (urban dust) and SRM 2975 (diesel particulate matter). The only NIST values that have been published for these dibenzopyrene isomers in the analyzed SRM are reference values for dibenzo(a,i)pyrene and dibenzo(a,h)pyrene in SRM 1649a. The concentrations determined in the SRM were in good agreement with reported NIST-certified and reference values and other concentrations reported in the literature. Standard reference material 1650 (diesel particulate matter) was also analyzed. The method could not, however, be validated using this material because certification of SRM 1650 had expired. The method is based on ultrasonically assisted extraction of the particulate material, then silica SPE pre-separation and isolation, and, separation and detection by hyphenated LC–GC–MS. The method is relatively rapid and requires only approximately 1–5 mg SRM particulate material to identify and quantify the analytes. Low extraction recoveries for the analytes, in particular the dibenzopyrenes, when extracting diesel SRM 2975 and 1650 resulted, however, in the dibenzopyrenes being present in amounts near their limits of quantifications in these samples. The method’s limit of quantification (LOQ), based on analyses of SRM 1649a, is in the range 10–77 pg. By use of this method more than 25 potential PAH isomers with a molecular weight of 302 could be separated.  相似文献   
8.
9.
10.
The "acidic mantle" of the skin surface has been related to several essential functions of the skin, although the origin of the acidity is still obscure. In this paper, we investigate how different transport processes can influence the local proton concentration inside a membrane consisting of oriented lipid bilayers. This system is chosen as a simple model of the extracellular lipids in the upper layer of the skin, the stratum corneum. We present a theoretical model for diffusional transport over the membrane in the presence of an osmotic gradient and a gradient in CO(2), taking into account the influence of these gradients on the lipid structure and the local electrostatics. We are also discussing the complications in applying the concept of pH to the stratum corneum. From this, we make the following conclusions: (i) The definition of pH in the stratum corneum is ambiguous, and thus, all statements regarding pH should always be related to a clear definition. (ii) A natural definition of pH in the stratum corneum can be proposed which takes into account local heterogeneity, local charges, and the fact that the stratum corneum is not in thermodynamical equilibrium. (iii) Diffusive transport across an oriented bilayer stack in the presence of an osmotic gradient and/or a gradient in CO(2) can give rise to a substantial gradient in pH. (iv) The results from the simplified model can be correlated to experimental observations of pH in the stratum corneum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号