首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
化学   9篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 125 毫秒
1
1.
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R (f-CB), functionalized multi-walled carbon nanotubes (f-MWCNT), and mesoporous carbon (PC-Zn-succinic) by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction (EOR) for direct ethanol fuel cell (DEFC). It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion. The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping, which was relevant to the efficiency of the catalysts. Moreover, the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding. The activity and stability for ethanol electrooxidation reaction (EOR) were investigated using cyclic voltammetry and chronoamperometry, respectively. The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction. Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR. Moreover, the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.  相似文献   
2.
3.
4.
5.
The catalytic activity of carbon nanotubes (CNTs) for the removal of greenhouse gases, like nitrous oxide (N(2)O), can be fine-tuned by metal doping. We modify the inert surfaces of CNTs with Sc, Ti and V transition metals in order to investigate their capability of converting N(2)O to N(2). The stable composite catalysts of Sc-, Ti- and V-doped (5,5)single-walled carbon nanotubes (SWCNTs), along with the unmodified one were investigated by periodic DFT calculations. Without metal doping, the N(2) O decomposition on the bare tube proceeds over a high energy barrier (54.3 kcal mol(-1)) which in the presence of active metals is reduced to 3.6, 8.0 and 10.2 kcal mol(-1) for V-, Ti- and Sc-doped (5,5)SWCNTs, respectively. The superior reactivity is a result of the facilitated electron transfer between the tube and N(2)O caused by the overlap between the d orbitals of the metal and the p orbitals of N(2)O.  相似文献   
6.
7.
8.
Herein, bipolar electrochemistry is applied in a straightforward way to the site‐selective in situ synthesis of metal–organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site‐selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle. The wireless nature of electrodeposition allows the potential for mass production of such Janus‐type objects.  相似文献   
9.
We employed periodic DFT calculations (PBE‐D2) to investigate the catalytic conversion of methanol over graphene embedded with Fe and FeO. Two possible pathways of dehydrogenation to formaldehyde and dehydration to dimethyl ether (DME) over these catalysts were examined. Both processes are initiated with the activation of methanol over the catalytic center through O?H cleavage. As a result, a methoxo‐containing intermediate is formed. Subsequently, H‐transfer from the methoxy to the adjacent ligand leads to the formation of formaldehyde. Conversely, the activation of the second methanol over the intermediate gives DME and H2O. Over Fe/graphene, the dehydration process is kinetically and thermodynamically preferable. Unlike Fe/graphene, FeO/graphene is predicted to be an efficient catalyst for the dehydrogenation process. Oxidative dehydrogenation over FeO/graphene takes place through two steps with free energy barriers of 5.7 and 10.2 kcal mol?1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号